Page 1

UNITED STATES OF AMERICA

+ + + + +

DEFENSE NUCLEAR FACILITIES SAFETY BOARD

+ + + + +

PUBLIC MEETING AND HEARING

+ + + + +

FRIDAY OCTOBER 8, 2010

+ + + + +

The Board met in the Three Rivers Convention Center, 7016 W. Grandridge Boulevard, Kennewick, Washington, Peter S. Winokur, Chairman, presiding.

PRESENT:

PETER S. WINOKUR, Chairman JESSIE H. ROBERSON, Vice Chair JOSEPH F. BADER, Board Member

LARRY W. BROWN, Board Member JOHN E. MANSFIELD, Board Member STAFF PRESENT:

TIMOTHY DWYER, Technical Director RICHARD AZZARO, General Counsel

PANEL MEMBERS PRESENT:

GREG ASHLEY, BNI DAVID BROCKMAN, DOE-ORP DONNA BUSCHE, URS STACY CHARBONEAU, DOE-ORP

DAVID DICKEY, Consultant INES TRIAY, DOE-EM DALE KNUTSON, DOE-ORP

Page 2

PANEL MEMBERS PRESENT (Cont'd):

DAVID S. KOSSON, CRESP

LONI M. PEURRUNG, PNNL

FRANK RUSSO, BNI

PAUL RUTLAND, WRPS

LEO SAIN, URS

```
Page 3
       C-O-N-T-E-N-T-S
Chairman Winokur and Board Members
Hydrogen Pipes and Ancillary Vessels
Hydrogen Pipes and Ancillary Vessels
Design
Safety
Testing
Quantitative Risk Analysis
Public Statements
Hanford Challenge
Liz Madsen. . . . . . . . . . .
            Hanford Challenge
```

		Page 4
1	P-R-O-C-E-E-D-I-N-G-S	
2	8:00 a.m.	
3	CHAIRMAN WINOKUR: Good morning.	
4	My name is Peter Winokur. I am the Chairman	
5	of the Defense Nuclear Facilities Safety Board	
6	and I will preside over this public meeting	
7	and hearing.	
8	At this time I would like to	
9	introduce my colleagues on the Safety Board.	
10	To my immediate left is Vice-Chairman Jessie	
11	Roberson and to her left is Mr. Larry Brown.	
12	On my right is Dr. John Mansfield and to his	
13	right is Mr. Joseph Bader. We five constitute	
14	the Board.	
15	The Board's General Counsel,	
16	Richard Azzaro, is seated to my far left. The	
17	Board's Technical Director, Timothy Dwyer, is	
18	seated to my far right. Several members of	
19	our staff closely involved with oversight of	
20	the Department of Energy's defense nuclear	
21	facilities at Hanford are also present.	
22	Today's meeting and hearing were	

1 first publicly noticed in the Federal Register 2 on July 26, 2010, and renoticed for a change 3 of location on September 15, 2010. It is 4 being held open to the public in accordance 5 with the provisions of the Government in the 6 Sunshine Act.

7 The hearing is being broadcast 8 over the internet via video streaming; the link can be found on the Board's website. A 9 video recording of the hearing will be made 10 available on the Board's website as soon as 11 possible after the hearing is concluded and 12 will remain available for at least 60 days. 13 14 A verbatim written transcript, 15 together with associated documents, will be 16 available for viewing and copying in the 17 Board's public reading room on the seventh 18 floor of the Board's headquarters in Washington, D.C. 19 20 In accordance with the Board's 21 practice and as stated in the Federal Register 22 notice, we will welcome comments from

1	interested members of the public at the
2	conclusion of testimony for each of the three
3	sessions comprising this public meeting and
4	hearing.
5	A list of those speakers who have
6	contacted the Board is posted at the entrance
7	to this auditorium. We have listed the people
8	in the order in which they have contacted us
9	or, if possible, when they wish to speak. I
10	will call the speakers in this order and ask
11	that speakers state their name and title at
12	the beginning of their presentation.
13	There is also a table at the
14	entrance to this room with a sign-up sheet for
15	members of the public who wish to make a
16	presentation but did not have an opportunity
17	to sign up previous to this time. They will
18	follow those who have already registered with
19	us in the order in which they have signed up.
20	In order to give everyone wishing
21	to speak an equal opportunity, we ask
22	presenters to limit their statements to five

Page 6

		Page 7
1	minutes. The Chair will then give	
2	consideration to additional comments should	
3	time permit.	
4	Presentations should be limited to	
5	comments, technical information, or data	
6	concerning the subjects of this meeting and	
7	hearing. The Board members may question	
8	anyone making presentations to the extent	
9	deemed appropriate.	
10	The record of this proceeding will	
11	remain open until November 7, 2010. The Board	
12	reserves the right to further schedule and	
13	regulate the course of this hearing, to	
14	recess, reconvene, postpone, or adjourn this	
15	meeting and hearing, and to otherwise exercise	
16	its authority under the Atomic Energy Act of	
17	1954, as amended.	
18	Now let me proceed to explain the	
19	Board's statutory authority for inquiring into	
20	the matters that are the subject of this	
21	public meeting and hearing. The Board's	
22	enabling statue, now in effect for more then	

1	twenty years, is found in the Atomic Energy
2	Act beginning in September 2286 of Title 42.
3	One section of this defines the
4	Board's role in the review of facility design
5	and construction. I quote, "The Board shall
6	review the design of a new Department of
7	Energy defense nuclear facility before
8	construction of such facility begins and shall
9	recommend to the Secretary, within a
10	reasonable time, such modifications of the
11	design as the Board considers necessary to
12	ensure adequate protection of public health
13	and safety.
14	During the construction of any
15	such facility, the Board shall periodically
16	review and monitor the construction and shall
17	submit to the Secretary, within a reasonable
18	time, such recommendations relating to the
19	construction of that facility as the Board
20	considers necessary to ensure adequate
21	protection of public health and safety.
22	An action of the Board, or a

I

		Page 9
1	failure to act, under this paragraph may not	
2	delay or prevent the Secretary of Energy from	
3	carrying out the construction of such a	
4	facility."	
5	The hearing begun yesterday	
6	morning forms a part of the Board's continuing	
7	effort to fulfill this statutory charge with	
8	respect to the Waste Treatment and	
9	Immobilization Plant, also known as the Waste	
10	Treatment Plant. The record of the hearing,	
11	both oral and written, will be used by the	
12	Board to formulate recommendations to the	
13	Secretary of Energy for this critical project.	
14	These recommendations may take the	
15	form of a formal Recommendation to the	
16	Secretary or may be transmitted to the	
17	Department through letters or informal	
18	exchanges between technical counterparts. The	
19	Board's oversight responsibilities continue	
20	through completion of construction, testing,	
21	operation, and eventual decommissioning of	
22	these facilities.	

		Page 10
1	The Board's statutory charter is,	
2	like that given to other agencies operating	
3	under the Atomic Energy Act, the protection of	
4	the public health and safety, including safety	
5	of the workers.	
6	In the case of the Waste Treatment	
7	Plant, however, this statutory charge is made	
8	more complex because proper construction and	
9	operation of the plant is critical in	
10	resolving the underlying health and safety	
11	problem, mainly the large volume of toxic and	
12	radioactive wastes now stored in underground	
13	tanks at Hanford.	
14	Many of these tanks are already 67	
15	years old, and would be almost 100 years old	
16	by the end of the projected treatment mission.	
17	Consequently, it is not enough, in this case,	
18	for the Board to focus solely on whether the	
19	construction of the Waste Treatment Plant will	
20	not suffer accidents harmful to workers or the	
21	public it must operate safely and	
22	effectively for many decades to remediate the	

		Ρ
1	safety hazard represented by tank waste.	
2	The Board has, therefore, inquired	
3	into many issues that involve a mixture of	
4	accident risk and successful and efficient	
5	long-term operations.	
6	At this time, I'd like to provide	
7	some additional background on the history of	
8	this project. The Hanford high-level waste	
9	tanks began receiving waste in the 1940s. As	
10	the initial single shell tanks were being	
11	constructed, they were designed for about a	
12	20-year life.	
13	Over the seven decades of	
14	operation of the tank farms, poor chemical and	
15	configuration control of the wastes has	
16	created a much more challenging problem for	
17	understanding the chemistry and properties of	
18	the waste, as well as getting them mobilized,	
19	than exists at other sites such as the	
20	Savannah River Site and the Idaho Cleanup	
21	Project.	
22	Characterization of this waste	

		Page	12
1	remains problematic. The first time that a		
2	single shell tank was suspected of leaking was		
3	in the mid-1950s. Many single-shell tanks		
4	have been proven leakers since then. The		
5	leakage exacerbates the need to get these		
6	wastes out of the tanks and in a stable form		
7	suitable for eventual disposal.		
8	The Department of Energy's		
9	solution to removing and stabilizing the waste		
10	to reduce the current and future threats to		
11	health and safety is the Waste Treatment		
12	Plant.		
13	The Waste Treatment Plant Project		
14	was initiated in the mid-1990s. This is a		
15	first of a kind project. The Board's formal		
16	oversight of the project began in earnest		
17	after a privatization effort was abandoned in		
18	2002. The Board has been advising the		
19	Department about our concerns related to the		
20	design basis safety requirements and their		
21	potential impact on operational safety		
22	throughout the life of the project.		

Page 13 Since initiating the project, the 1 2 Department has pursued internal and external reviews of the project, obtaining advice from 3 experts in academia, the chemical and process 4 5 industries, and its national laboratories to 6 help inform the design, safe operation and 7 performance of the plant over its projected 8 40-year operational life. 9 It is important to note that the Department undertook a significant redesign 10 effort starting in 2009, even though the 11 design of the plant was more than 70 percent 12 13 complete. The redesign of the plant is now 14 over 80 percent complete and construction of 15 its pre-treatment facility is more than 30 16 percent complete. 17 Recently, the Department indicated 18 to the Board that it is transitioning the Waste Treatment Plant project from a design 19 20 and construction project to one of 21 construction and commissioning. The 22 Department has referred to this transition as

"pivoting."

1

2	As such, the Department is
3	planning to wrap up its design actions by
4	establishing the final design criteria for the
5	plant's structures, systems, and components.
6	The pivot is intended to provide a defined
7	path forward to finish the design of the
8	systems and components that have not been
9	finalized and to resolve any outstanding
10	technical issues.
11	The Board is deeply concerned that
12	the plant may be commissioned before several
13	key technical issues are fully resolved. Once
14	operational and exposed to radioactive waste,
15	options for design changes in black and hot
16	cells will be extremely limited, costly, and
17	expose workers to hazardous situations. To
18	the maximum extent possible, solutions must be
19	accommodated before commissioning. A learn-
20	as-we-go philosophy does not seem prudent for
21	this facility.
22	Given that the project is now

		Page 15
1	pivoting, wrapping up design and focusing on	
2	commissioning, it is a crucial time to have	
3	DOE [Department of Energy] explain where they	
4	are, where they are going, what remains to be	
5	done, and in what time frame. Also, implicit	
6	in the Board's statutory mandate is keeping	
7	the public appropriately informed of issues	
8	affecting public health and safety. Those are	
9	the goals for these proceedings.	
10	The proceedings began last month	
11	when DOE provided over two hundred pages of	
12	written answers to Board questions. These	
13	questions and answers are available on the	
14	Board's website and will become a part of the	
15	record of these proceedings. I want to take a	
16	moment to thank the Department for its timely	
17	response to these questions.	
18	We began yesterday to explore some	
19	of these answers to gain a more complete	
20	understanding. However, because of the large	
21	volume of information that must be discussed,	
22	a lack of further inquiry in this hearing or	

		Page 16
1	in the near future should not necessarily be	
2	viewed as satisfaction on the part of the	
3	Board with either a previous written or verbal	
4	answer.	
5	The Board noted in its transmittal	
б	of questions to DOE in August, 2010 that these	
7	questions should be viewed as a starting point	
8	for the discussions that will occur during	
9	this public meeting and hearing.	
10	There are several areas of the	
11	Waste Treatment Plant design in which the	
12	Board has concerns with the safety and	
13	ultimate operation for the decades the plant	
14	must operate. These areas include:	
15	The ability of the plant to	
16	adequately mix the wastes after they are	
17	transferred from the tank farms into the	
18	plant.	
19	The hydrogen control strategy for	
20	dealing with the hydrogen gas that is	
21	inevitably generated by the high-level wastes.	
22	The implementation of safety	

controls necessary to implement the hydrogen 1 2 control strategy. The likelihood that limitations on 3 4 the plant's operating envelope resulting from 5 the performance of the plant's mixing systems 6 will result in more demands on the tank farms 7 to deliver waste that meets restrictive waste 8 acceptance criteria or the need to provide 9 alternative processing capability. The third session of the Board's 10 11 hearings -- this morning's session -- is going 12 to concentrate on concerns with particular 13 aspects of the revised safety design strategy. 14 We are trying to understand the ability of the plant to safely, effectively, and efficiently 15 process waste delivered from the tank farms so 16 that it can be vitrified for eventual 17 18 disposal. 19 This involves the treatment of 20 waste that, by its very nature, generates a 21 significant quantity of hydrogen gas. 22 Hydrogen gas can, under the right

> Neal R. Gross & Co., Inc. 202-234-4433

Page 17

		Page 18
1	circumstances, accumulate in process piping	
2	and become an explosion hazard, with the	
3	potential to seriously damage process piping.	
4	In extreme cases, such explosions	
5	could breach the primary confinement boundary,	
6	resulting in a potential hazard to workers or	
7	even the public, and the potential	
8	interruption of waste processing for long	
9	periods. DOE has developed a hydrogen-in-	
10	pipes-and-ancillary-vessels, HPAV [hydrogen-	
11	in-pipes-and-ancillary-vessels], safety design	
12	that is intended to contain the effects of a	
13	hydrogen explosion in the piping system or, in	
14	extreme cases, actively prevent the hydrogen	
15	explosion. The design approach is new and, as	
16	of today, incomplete.	
17	We have requested that the	
18	Department's expert in hydrogen explosions	
19	from academia participate in today's panel	
20	discussion. We had also invited the Team	
21	Leader from the HPAV Independent Review Team	
22	but he was not able to be with us today.	

		Page	19
1	We have also asked for		
2	participation from project design personnel		
3	from Bechtel National, Incorporated, URS		
4	Corporation, as well as the Department's		
5	responsible personnel for managing the		
6	project.		
7	That concludes my opening remarks.		
8	I will now ask my fellow Board members if they		
9	have opening remarks before we begin the		
10	testimony.		
11	Hearing no such request, I would		
12	like to invite the Assistant Secretary of		
13	Energy for Environmental Management, the		
14	Honorable Ines Triay, to make some opening		
15	remarks.		
16	DR. TRIAY: I appreciate the		
17	opportunity to be here these last two days to		
18	discuss our initiatives in assuring that we		
19	will define, construct, and commission the		
20	Waste Treatment and Immobilization Plant, WTP		
21	[Waste Treatment and Immobilization Plant], so		
22	that it can operate safely and reliably.		

I would also like to introduce 1 2 some of the senior safety leadership from the 3 Department of Energy who have traveled to 4 Washington State to support these discussions. 5 Dr. Steve Krahn, to my right, is the Deputy 6 Assistant Secretary for Safety and Security in 7 the Office of Environmental Management. 8 Mr. Richard Lagdon, to my left, is 9 the Chief of Nuclear Safety for the Department 10 of Energy. The three of us represent 100 11 years of nuclear safety experience. Along with all of our work colleagues at the Waste 12 13 Treatment Project we represent many hundreds 14 of years of experience of technically complex 15 and high-risk projects such as the Waste 16 Treatment Plant and tank farms. 17 As owner and operator of multiple 18 projects through the Department's complex 19 overall our nuclear safety record has been 20 exemplary. Our commitment to a safe, 21 efficient, and effective Waste Treatment Plant 22 is embodied by the three of us and our work

> Neal R. Gross & Co., Inc. 202-234-4433

Page 20

colleagues in the Department. 1 2 Safe operations including safety of the public, safety of our workers, and 3 4 protection of the environment are paramount to 5 the Office of Environmental Management and 6 have been the cornerstone of my career. 7 With respect to the Waste 8 Treatment Plant you have heard the Deputy 9 Secretary's and the Federal Project Director's 10 experience and perspectives on the importance of this facility to fulfilling the 11 Department's mission to safely treat the 12 Hanford tank waste. 13 14 I also devote a great deal of my 15 efforts to the Waste Treatment Plant and the 16 Tank Waste Program. We have over 15 years of 17 experience treating tank waste at the Savannah River site which contains twice the total 18 radiation source than the Hanford tank farms. 19 20 High-level waste produces hydrogen 21 which can be flammable or detonable in 22 sufficient quantities so the Waste Treatment

		Page	22
1	Plant will be protected with active safety		
2	systems to ensure hazardous concentrations of		
3	gases don't accumulate.		
4	Conditions can exist in the piping		
5	and inline components where the waste may		
б	remain stagnate. If a sufficient		
7	concentration of hydrogen were to accumulate		
8	and mixed with an oxidant and if an ignition		
9	source were present, the gas mixtures could		
10	ignite creating the postulated hydrogen event.		
11	The piping in vessels that contain		
12	high-level waste, primarily in the pre-		
13	treatment and high-level waste facilities, are		
14	the primary boundaries for this waste. The		
15	Waste Treatment Plant contractor has developed		
16	the design criteria for the piping to prevent		
17	failures from perforations and detonations.		
18	The Department has reviewed and approved those		
19	criteria.		
20	The project's design has always		
21	included elements of both active safety		
22	controls to prevent an HPAV event from		

		Pa
1	occurring and passive safety features to	
2	assure piping integrity should an HPAV event	
3	occur with the ultimate goal of ensuring that	
4	the piping and inline component primary	
5	confinement boundaries are not breached by a	
6	postulated hydrogen event.	
7	In April of 2006 the Department	
8	issued a Safety Evaluation Report that	
9	addressed criteria for HPAV events. In that	
10	safety evaluation report DOE approved a	
11	strategy that relied primarily on active	
12	controls to prevent HPAV events. However, the	
13	Safety Evaluation Report also included	
14	provisions for passive controls for piping.	
15	At that time the BNI [Bechtel	
16	National Incorporated] had assessed that pipe	
17	sizes less than or equal to two inches in	
18	diameter could meet the passive design. The	
19	Safety Evaluation Report further stated that	
20	limited plastic behavior would be approved	
21	when qualified by a supporting risk assessment	
22	that should include a best estimate for the	

Neal R. Gross & Co., Inc. 202-234-4433

Page 23

		Page	
1	facility incorporating estimation of		
2	probability, location, and intensity of		
3	hydrogen events.		
4	Interactions with the Board and		
5	staff at that time indicated agreement with		
6	this approach. In response to ongoing		
7	evaluation of hydrogen events, BNI began a		
8	testing program to evaluate the consequences		
9	of HPAV events on piping and complex component		
10	designs such as PUREX [Plutonium Uranium		
11	Extraction] connectors.		
12	In 2009 the manager of the Office		
13	of River Protection initiated several		
14	independent reviews to determine whether the		
15	2006 HPAV strategy both concerns from an		
16	operability standpoint and whether an		
17	alternative strategy could now be supported.		
18	As a result of the recommendations from those		
19	reviews, the Department directed the		
20	contractor to propose an HPAV strategy that is		
21	less dependent on active controls.		
22	The Department directive for a		

		Page 25
1	design with fewer HPAV active controls did not	
2	constitute a significant redesign effort as	
3	was mentioned in the opening remarks by the	
4	Board. In fact, the HPAV controls have always	
5	been an additive layer of controls that do not	
6	change the innate waste process design	
7	functions but add additional controls that	
8	could disrupt efficient operations and	
9	increase operational risk to plant	
10	availability and worker safety.	
11	The contractor has recommended an	
12	approach that continues to rely on active and	
13	passive features but with a reduced number of	
14	active controls. The result in superior	
15	design will reduce exposure to workers,	
16	improve operational efficiency, thereby	
17	facilitating more expeditious completion of	
18	the tank waste mission and reduce risk of	
19	facility or system contamination.	
20	The specifics of the design	
21	approach to protect against a postulated	
22	hydrogen events rely on passive engineer pipe	

Page 26 component pressure boundary for piping up to 1 2 four inch in diameter where it can be shown that the resulting loads on the piping and in 3 4 like components meet the approved design 5 criteria. Active controls where the 6 postulated hydrogen events could cause the 7 loads on piping and inline components to 8 exceed acceptance criteria. 9 The design of piping systems in the Waste Treatment Plant ensures that an HPAV 10 event in the piping will not adversely affect 11 the ability of the piping on inline components 12 to perform their intended safety function, 13 14 will not render the piping inoperable, will not introduce additional hazardous risks to 15 16 workers or have significant adverse impact on 17 WTP operations thereby facilitating efficient 18 plant operations. 19 In advancing the latest industry 20 experience with risk analysis the project also 21 completed evaluation of rigorous test programs 22 and developed the HPAV quantitative risk

		Pag
1	analysis tool to organize application of the	
2	experimental results to specific pipe routes	
3	as required for ASME Code compliance [American	
4	Society of Mechanical Engineers]. The HPAV	
5	testing was conducted at the California	
6	Institute of Technology by Dr. Shepherd who is	
7	on the panel, and at Southwest Research	
8	Institute in San Antonio, Texas.	
9	From these test programs the	
10	project has improved its understanding of HPAV	
11	phenomena which include improved understanding	
12	of gas phenomenology, validation that the	
13	stainless steel piping is robust relative to	
14	HPAV events, and that the piping shows minimal	
15	or no permanent deformation following repeated	
16	detonations, greater insight into the response	
17	of piping to high frequency oscillations,	
18	important design information regarding	
19	components, test data available to benchmark	
20	analytical models.	
21	The QRA [Quantitative Risk	
22	Analysis] provides an extremely insightful	

		Pa
1	tool from a safety perspective. The QRA	
2	employs a multi-functional team of design,	
3	operations, and safety personnel to analyze	
4	the potential for hydrogen events by reviewing	
5	the details of each path affected route and	
6	the number of times that route is expected to	
7	be used over the life of the plant, the normal	
8	and not normal operating conditions for each	
9	HPAV affected system using the structure	
10	analysis of the event fault tree.	
11	The event and fault tree logic	
12	facilitates the review and response by looking	
13	at loss of power, component failures, operator	
14	errors, and other conditions that allow waste	
15	to remain stagnate for extended periods. This	
16	approach has been reviewed by the HPAV	
17	Independent Review Team which consisted of 12	
18	independent experts with a combined industry	
19	experience of 450 years spanning the range of	
20	technical disciplines applicable to the HPAV	
21	strategy.	
22	While Dr. Mattson is not able to	

		Page 29
1	be here today to testify on the team's efforts	
2	due to a death in his immediate family, I will	
3	summarize the team's review. The HPAV	
4	Independent Review Team concluded that	
5	following implementation of the team's finding	
6	there is high confidence that the QRA approach	
7	is acceptable for the loads to be used in	
8	design and that there is low probability of	
9	exceeding either their frequency or their	
10	magnitude.	
11	The best estimate of pipe stresses	
12	and strains computed from the defined loads in	
13	the manner proposed by BNI are not likely to	
14	be significantly exceeded. The combination of	
15	QRA load definitions, best estimate piping	
16	system response calculations, and conservative	
17	acceptance criteria developed pursuant to the	
18	piping code B31.3 provides a reasonable	
19	balance of probabilistic and deterministic	
20	elements appropriate for design of HPAV piping	
21	and components.	
22	The net result of this approach to	

		Pa
1	design will be a low probability of pipe	
2	failure if hydrogen explosions occur. I	
3	considered this industry endorsement evidence	
4	that the Department has ensured that safety	
5	and quality of the WTP design for HPAV events.	
6	We met with you on August 24th and	
7	September 24th to review the project's	
8	implementation plan for solving the	
9	Independent Review Team findings and	
10	recommendations. I endorse the project's plan	
11	and we are committed to continuing	
12	interactions with the Board and its staff as	
13	we implement the findings and recommendations	
14	and complete the designs.	
15	We will ensure the inputs and	
16	assumptions of the QRA are adequately	
17	protected for the operational life of the	
18	facility. Finally, we will incorporate	
19	insights from the QRA application into our	
20	response to the Defense Nuclear Facility	
21	Safety Board Recommendation 2009-1 which	
22	pertains to the need for standards governing	

Neal R. Gross & Co., Inc. 202-234-4433

Page 30

risk applications. 1 2 In closing, I would like to state that the evolution of the HPAV analysis and 3 4 design criteria is part of the normal DOE 5 process that may establish very conservative 6 approaches in the early stages of design but 7 changes to allow improvements to the plant's 8 design and operation as design evolves and 9 assessing to understand hazards is completed. These efforts do not result in a 10 significant redesign of the Waste Treatment 11 12 Plant systems but improved design and operational efficiency and reduce risk in 13 14 support of the WTP mission to process waste. 15 Finally, no design changes have 16 been implemented using the HPAV analysis and design criteria and none will be made until 17 18 the finding resolutions are reviewed by the 19 Independent Review Team and are closed. 20 I would like to give the floor to 21 Mr. Richard Lagdon who will address the last

issue that we were discussing yesterday.

22

Page 32 MR. LAGDON: Chairman Winokur, 1 2 Members of the Board, and staff, I appreciate the opportunity to present for the record my 3 4 statement regarding the use of deposition 5 velocity at the Waste Treatment Plant. Ι 6 would also like to thank Dr. Triay for 7 recognizing my role in addressing this issue. 8 My position as the Chief of Nuclear Safety was created in response to 9 Defense Nuclear Facility Safety Board 10 Recommendation 2004-1. One of my 11 12 responsibilities is to ensure safety is being 13 appropriately addressed by the line. I take 14 this responsibility very seriously. MAX-2 Code Guidance was developed 15 16 and accepted by the Defense Nuclear Facility Safety Board in 2004 as part of the 17 18 Department's effort to improve the software 19 quality assurance of software utilized in 20 safety-related applications. 21 This guidance specified generic 22 conservative values for use across the

		Page	33
1	complex. These values were based on NRC		
2	[Nuclear Regulatory Commission] requirements		
3	with similar applicability for facilities		
4	operated by DOE.		
5	When evaluating the conditions		
6	specific for the Waste Treatment Plant I		
7	reevaluated the technical basis contained in		
8	NRC regulations and standards. This		
9	evaluation was published in September 2009.		
10	Because the evaluation continued		
11	to be challenged because of its use of 1		
12	centimeter per second for deposition velocity,		
13	I solicited the independent technical review		
14	of a nationally recognized expert, Dr. John		
15	Tell, on the subject of atmospheric dispersion		
16	and modeling to review the issues and provide		
17	recommendations to the Department.		
18	The question to be evaluated is		
19	the MAX-2 code as implemented based on		
20	documentation assuming 1 centimeter per second		
21	deposition velocity for particles sufficiently		
22	conservative for the Hanford site such that		

Page 34 the target dose to the public is not 1 2 underestimated at the 95 percentile level. Dr. Tell concluded that the MAX-2 3 4 results and the analysis of the Waste 5 Treatment Plant are conservative and meet the 6 objectives of the assessment question. 7 CHAIRMAN WINOKUR: Excuse me, Mr. 8 Lagdon. We are going to need to finish up 9 your testimony here in the next couple of minutes. 10 11 MR. LAGDON: Yes, sir. CHAIRMAN WINOKUR: I don't know if 12 13 you have a lot to go. 14 MR. LAGDON: No, I've got one more 15 paragraph, sir. 16 CHAIRMAN WINOKUR: Wonderful. 17 Thank you. 18 MR. LAGDON: Okay. In reviewing 19 the revised severity level calculations the 20 impact on the analysis will not affect the 21 design of WTP because of the small difference 22 in the impacts using a more conservative

Page 35

number.

1

2	I will review this analysis with
3	the Waste Treatment Plant safety analysis
4	personnel in the near future and issue a
5	revised technical paper reflecting the
6	recommendations of an independent expert
7	review. This will ensure that the Waste
8	Treatment Plant is designed to the appropriate
9	criteria and a conservative analysis exist
10	such that the target dose to the public is not
11	underestimated at the 95th percentile level.
12	DR. TRIAY: Chairman Winokur, Dr.
13	Krahn will be submitting for the record our
14	steps as the head of the Technical Authority
15	Board to ensure compliance of the QRA process
16	with 10 CFR 830 [Code of Federal Regulations].
17	CHAIRMAN WINOKUR: Thank you. I
18	appreciate it. Thank you, Dr. Triay. Thank
19	you Mr. Lagdon and Dr. Krahn.
20	The session will continue with
21	testimony offered by members of the Board
22	staff. I ask each staff member who offers

Page 36 testimony to begin by stating his name and 1 2 position for the record. 3 MR. KASDORF: Good morning, Mr. 4 Chairman, members of the Board. My name is 5 Roy Kasdorf. With me are Mr. Steven Stokes and Mr. Scott Suffridge, staff leads for the 6 7 Hydrogen Control and WTP. I am the lead for 8 the Board's Nuclear Facility, Design, and 9 Infrastructure group. 10 I am responsible for ensuring that 11 the staff reviews of the design and 12 construction of the Waste Treatment and Immobilization Plant are completed consistent 13 14 with the Board's mission. 15 In this morning's meeting the 16 Board is considering safety-related aspects of 17 the pretreatment design and operations, 18 specifically the safety design strategy for 19 control of hydrogen. I will discuss the 20 hazards presented by the hydrogen process 21 vessels, piping and inline components and the 22 Department of Energy's revised safety strategy

to control this hazard. 1 2 As I've said in previous sessions, 3 over the past eight years the Board's staff 4 has been reviewing the pretreatment facility 5 design and safety basis development. The 6 staff recognizes that operation of the WTP is 7 vital to the remediation of the Hanford site. 8 The WTP is the primary means for 9 reducing the risk resulting from storage of high-level waste in Hanford's tanks. 10 As such, the staff recognizes that the WTP must operate 11 efficiently and safely over the entire 12 duration of the multi-decade mission. 13 14 The staff concerns are fundamentally related to safety issues but 15 16 many of the safety issues would also result in 17 significant operational problems such as the 18 build up of material in vessels, plugging or 19 bursting pipes. Such operational problems 20 would delay processing of Hanford tank waste. 21 The Board believes that such a delay is a 22 safety concern.

A little bit of background. 1 2 Hydrogen gas is produced in all waste tanks 3 depending on the amount of radiation present, hydrogen containing chemicals present, and the 4 5 concentration of hydrogen scavengers. There are three distinct mechanisms that produce 6 7 hydrogen gas from the tank waste; radiolysis, 8 which is radiation interacting with molecules 9 containing hydrogen breaking the chemical bonds to produce hydrogen gas. Radiolysis 10 11 typically generates the largest amounts of 12 hydrogen gas in WTP. Thermolysis, which is the 13 14 deformation of organic molecules containing 15 hydrogen in the presence of radiation produces 16 hydrogen gas. Due to the relatively low 17 temperatures in WTP thermolysis is not a large 18 contributor to the overall gas generation in 19 WTP. The third mechanism is corrosion 20 21 of metal piping in vessels generates hydrogen but this will be insignificant in WTP due to 22

> Neal R. Gross & Co., Inc. 202-234-4433

Page 38

the corrosion resistant materials used to make 1 2 up the piping in vessels. In order for 3 hydrogen gas to become an explosion hazard two 4 other factors must also be present with the 5 hydrogen; a source of oxygen and an ignition 6 source. 7 There are two potential sources of 8 gaseous oxygen in the Hanford's waste. First, 9 oxygen can become entrained in the waste, for example from sparge that are used to mix some 10 11 vessels. Second, oxygen can be present in the form of nitrous oxide, a gas produced in the 12 13 waste from compounds containing nitrogen. 14 There are several potential ignition sourcing including mechanical 15 16 components and compressive heating of the gas itself. Unfortunately, hydrogen gas has one 17 18 of the lowest minimum ignition energies known which is why the control of ignition sources 19 20 is rarely, if ever, relied upon as a control 21 strategy for preventing hydrogen explosions. 22 DOE began the hydrogen design

Page 39

		Page
1	effort in response to two explosion events at	
2	nuclear power stations in 2001, one in Japan,	
3	the other in Germany. DOE correctly	
4	recognized that there were some more potential	
5	explosion hazards associated with hydrogen and	
6	piping systems in WTP.	
7	DOE's initial hydrogen control	
8	strategy was conservative and focused on	
9	preventing hydrogen explosions in vessels and	
10	explosions with the potential to deform	
11	piping. Ultimately DOE and BNI developed what	
12	the Board considered to be a conservative	
13	hydrogen and pipe safety design strategy.	
14	In the Board's quarterly report to	
15	Congress dated October 17, 2007, the Board	
16	made the following observation: DOE has	
17	developed a conservative design criterion.	
18	The Board believes the design criterion is	
19	adequate for its intended purpose and the	
20	issue is considered resolved.	
21	However, in early 2009 DOE formed	
22	a hydrogen and piping in ancillary vessels, an	

		Page	41
1	HPAV, assessment team to evaluate the controls		
2	and design approach for the control of		
3	hydrogen in WTP. As discussed in previous		
4	sessions, this action was taken due to DOE's		
5	concern with complexity in the WTP.		
б	On February 26, 2009 this team		
7	provided DOE with several recommendations that		
8	deviated significantly from the hydrogen		
9	control strategy considered acceptable by the		
10	Board in 2007. These recommendations are the		
11	basis for DOE's revised hydrogen and pipe		
12	safety design strategy.		
13	The team's recommendations can be		
14	summarized as follows. First, DOE should		
15	reevaluate select assumptions and methods used		
16	in accident analysis. Second, DOE should		
17	separate the evaluation approach for the		
18	safety case and the mission case. The team		
19	judged that hydrogen explosions was primarily		
20	a mission case concerned with operational		
21	availability and that the safety concern was		
22	mitigated by the building and its confinement		

Page 42

1	ventilation system.
2	Third, DOE should adopt a mission
3	risk-based approach to evaluate the physical
4	phenomena and potential consequences of
5	hydrogen accumulation. Lastly, DOE should
6	reduce the levels of conservatism in the
7	evaluation methodology and structural
8	acceptance criteria.
9	Subsequently, in its quarterly
10	report to Congress dated June 22, 2009 the
11	Board observed that there are several of these
12	recommendations were inadequately supported.
13	The prime example was the creation of a
14	mission case to justify allowing hydrogen
15	explosions that could result in breaching the
16	primary confinement boundary. The Board
17	emphasized that implementation of the
18	recommendations would be detrimental to the
19	safety of the facility.
20	Since then DOE has decided to
21	pursue some but not all of the team's
22	recommendations. DOE approved a revised

	Page 43
1	design criteria on February 15th of this year
2	that allowed hot cell piping to undergo
3	permanent deformation, its bulge, due to an
4	explosion but did not accept the primary
5	boundary could rupture and did not allow
6	permanent deformation of piping in the black
7	cells.
8	The approved approach uses risk-
9	based quantitative risk analysis, QRA, to
10	calculate the frequency and severity of
11	hydrogen explosions in each run of piping and
12	then applies those predictions to design the
13	piping and select the safety controls.
14	The staff believes that DOE's
15	revised approach is more complex, less
16	conservative, and reduces the margin of safety
17	for the hot cell piping design compared to the
18	original design approach adopted in 2007.
19	In its April 15, 2010 quarterly
20	report to Congress the Board made the
21	following observation. The Board is concerned
22	that the design criteria lacks sufficient

Pa1specificity to ensure that the design will2maintain the integrity of the primary3confinement boundary as intended by DOE Order4420.1, Facility Safety.5The primary issues were DOE6invoked a provision in the code that permits7the facility owner to approve alternative8methods for piping system design. Although9this latitude exists, the alternative methods10must be consistent with DOE's directives for11the design of defense nuclear facilities such12as DOE Order 420.1.13The proposed strategy uses QRA to14determine the peak pressure and the frequency15of explosions. DOE has no standard governing16the application of QRAs. BNI intends to test17inline components, valves, and pumps that did18not specify the specific methods or the19criteria for the qualification.20DOE's justification for allowing21permanent deformation is that operators can22inspect the hot cell piping, observe leaks,			
2maintain the integrity of the primary3confinement boundary as intended by DOE Order4420.1, Facility Safety.5The primary issues were DOE6invoked a provision in the code that permits7the facility owner to approve alternative8methods for piping system design. Although9this latitude exists, the alternative methods10must be consistent with DOE's directives for11the design of defense nuclear facilities such12as DOE Order 420.1.13The proposed strategy uses QRA to14determine the peak pressure and the frequency15of explosions. DOE has no standard governing16the application of QRAs. BNI intends to test17inline components, valves, and pumps that did18not specify the specific methods or the19criteria for the qualification.20DOE's justification for allowing21permanent deformation is that operators can			Pa
 confinement boundary as intended by DOE Order 420.1, Facility Safety. The primary issues were DOE invoked a provision in the code that permits the facility owner to approve alternative methods for piping system design. Although this latitude exists, the alternative methods must be consistent with DOE's directives for the design of defense nuclear facilities such as DOE Order 420.1. The proposed strategy uses QRA to determine the peak pressure and the frequency of explosions. DOE has no standard governing the application of QRAS. ENI intends to test inline components, valves, and pumps that did not specify the specific methods or the criteria for the qualification. DOE's justification for allowing permanent deformation is that operators can 	1	specificity to ensure that the design will	
4420.1, Facility Safety.5The primary issues were DOE6invoked a provision in the code that permits7the facility owner to approve alternative8methods for piping system design. Although9this latitude exists, the alternative methods10must be consistent with DOE's directives for11the design of defense nuclear facilities such12as DOE Order 420.1.13The proposed strategy uses QRA to14determine the peak pressure and the frequency15of explosions. DOE has no standard governing16the application of QRAS. BNI intends to test17inline components, valves, and pumps that did18not specify the specific methods or the19criteria for the qualification.20DOE's justification for allowing21permanent deformation is that operators can	2	maintain the integrity of the primary	
5The primary issues were DOE6invoked a provision in the code that permits7the facility owner to approve alternative8methods for piping system design. Although9this latitude exists, the alternative methods10must be consistent with DOE's directives for11the design of defense nuclear facilities such12as DOE Order 420.1.13The proposed strategy uses QRA to14determine the peak pressure and the frequency15of explosions. DOE has no standard governing16the application of QRAs. BNI intends to test17inline components, valves, and pumps that did18not specify the specific methods or the19criteria for the qualification.20DOE's justification for allowing21permanent deformation is that operators can	3	confinement boundary as intended by DOE Order	
 invoked a provision in the code that permits the facility owner to approve alternative methods for piping system design. Although this latitude exists, the alternative methods must be consistent with DOE's directives for the design of defense nuclear facilities such as DOE Order 420.1. The proposed strategy uses QRA to determine the peak pressure and the frequency of explosions. DOE has no standard governing the application of QRAs. BNI intends to test inline components, valves, and pumps that did not specify the specific methods or the criteria for the qualification. DOE's justification for allowing permanent deformation is that operators can 	4	420.1, Facility Safety.	
7the facility owner to approve alternative8methods for piping system design. Although9this latitude exists, the alternative methods10must be consistent with DOE's directives for11the design of defense nuclear facilities such12as DOE Order 420.1.13The proposed strategy uses QRA to14determine the peak pressure and the frequency15of explosions. DOE has no standard governing16the application of QRAS. BNI intends to test17inline components, valves, and pumps that did18not specify the specific methods or the19criteria for the qualification.20DOE's justification for allowing21permanent deformation is that operators can	5	The primary issues were DOE	
8 methods for piping system design. Although 9 this latitude exists, the alternative methods 10 must be consistent with DOE's directives for 11 the design of defense nuclear facilities such 12 as DOE Order 420.1. 13 The proposed strategy uses QRA to 14 determine the peak pressure and the frequency 15 of explosions. DOE has no standard governing 16 the application of QRAs. BNI intends to test 17 inline components, valves, and pumps that did 18 not specify the specific methods or the 19 criteria for the qualification. 20 DOE's justification for allowing 21 permanent deformation is that operators can	6	invoked a provision in the code that permits	
9 this latitude exists, the alternative methods must be consistent with DOE's directives for the design of defense nuclear facilities such as DOE Order 420.1. 13 The proposed strategy uses QRA to determine the peak pressure and the frequency of explosions. DOE has no standard governing the application of QRAs. BNI intends to test inline components, valves, and pumps that did not specify the specific methods or the criteria for the qualification. 20 DOE's justification for allowing permanent deformation is that operators can	7	the facility owner to approve alternative	
 must be consistent with DOE's directives for the design of defense nuclear facilities such as DOE Order 420.1. The proposed strategy uses QRA to determine the peak pressure and the frequency of explosions. DOE has no standard governing the application of QRAs. BNI intends to test inline components, valves, and pumps that did not specify the specific methods or the criteria for the qualification. DOE's justification for allowing permanent deformation is that operators can 	8	methods for piping system design. Although	
11 the design of defense nuclear facilities such 12 as DOE Order 420.1. 13 The proposed strategy uses QRA to 14 determine the peak pressure and the frequency 15 of explosions. DOE has no standard governing 16 the application of QRAS. BNI intends to test 17 inline components, valves, and pumps that did 18 not specify the specific methods or the 19 criteria for the qualification. 20 DOE's justification for allowing 21 permanent deformation is that operators can	9	this latitude exists, the alternative methods	
12as DOE Order 420.1.13The proposed strategy uses QRA to14determine the peak pressure and the frequency15of explosions. DOE has no standard governing16the application of QRAs. BNI intends to test17inline components, valves, and pumps that did18not specify the specific methods or the19criteria for the qualification.20DOE's justification for allowing21permanent deformation is that operators can	10	must be consistent with DOE's directives for	
13The proposed strategy uses QRA to14determine the peak pressure and the frequency15of explosions. DOE has no standard governing16the application of QRAs. BNI intends to test17inline components, valves, and pumps that did18not specify the specific methods or the19criteria for the qualification.20DOE's justification for allowing21permanent deformation is that operators can	11	the design of defense nuclear facilities such	
14determine the peak pressure and the frequency15of explosions. DOE has no standard governing16the application of QRAS. BNI intends to test17inline components, valves, and pumps that did18not specify the specific methods or the19criteria for the qualification.20DOE's justification for allowing21permanent deformation is that operators can	12	as DOE Order 420.1.	
of explosions. DOE has no standard governing the application of QRAs. BNI intends to test inline components, valves, and pumps that did not specify the specific methods or the criteria for the qualification. DOE's justification for allowing permanent deformation is that operators can	13	The proposed strategy uses QRA to	
16 the application of QRAs. BNI intends to test 17 inline components, valves, and pumps that did 18 not specify the specific methods or the 19 criteria for the qualification. 20 DOE's justification for allowing 21 permanent deformation is that operators can	14	determine the peak pressure and the frequency	
17 inline components, valves, and pumps that did 18 not specify the specific methods or the 19 criteria for the qualification. 20 DOE's justification for allowing 21 permanent deformation is that operators can	15	of explosions. DOE has no standard governing	
18 not specify the specific methods or the 19 criteria for the qualification. 20 DOE's justification for allowing 21 permanent deformation is that operators can	16	the application of QRAs. BNI intends to test	
<pre>19 criteria for the qualification. 20 DOE's justification for allowing 21 permanent deformation is that operators can</pre>	17	inline components, valves, and pumps that did	
20 DOE's justification for allowing 21 permanent deformation is that operators can	18	not specify the specific methods or the	
21 permanent deformation is that operators can	19	criteria for the qualification.	
	20	DOE's justification for allowing	
22 inspect the hot cell piping, observe leaks,	21	permanent deformation is that operators can	
	22	inspect the hot cell piping, observe leaks,	

Neal R. Gross & Co., Inc. 202-234-4433

Page 44

		Page	45
1	and repair failed components. However, the		
2	facility design does not include the		
3	capability to readily detect an explosion.		
4	Further, repair or replacement of the piping		
5	could be time consuming, cause significant		
6	disruption of plant operations, and		
7	potentially result in considerable risk to		
8	workers performing the work.		
9	In April 2010 BNI chartered the		
10	Hydrogen Pipes and Ancillary Vessels		
11	Independent Review Team, the HIRT. The HIRT's		
12	review was intended to provide added assurance		
13	that the criteria and the methodology used to		
14	design WTP to withstand the affects of		
15	postulated hydrogen explosions was technically		
16	defensible and conservative to ensure the		
17	safety and reliability of the WTP design.		
18	At the time the HIRT conducted its		
19	review BNI had not completed the final design		
20	approach, the approach for qualifying inline		
21	components, or the QRA. Further, several key		
22	input documents reviewed by the HIRT were		

		Page
1	still in draft form.	
2	On April 12, 2010 the HIRT issued	
3	its final report which identified 35 findings	
4	and 32 recommendations. The HIRT concluded	
5	that the design approach for hydrogen and	
6	piping components was acceptable provided BNI	
7	resolve the findings before implementing the	
8	revised approach.	
9	The HIRT provided the	
10	recommendations as discretionary improvements	
11	that DOE and BNI should consider for making	
12	long-term improvements when using risk-formed	
13	approach design. DOE approved a closure plan	
14	to address both the findings and	
15	recommendations from the HIRT report on	
16	September 16, 2010.	
17	The closure plan describes BNI's	
18	response to resolve each of the HIRT's	
19	findings, the process to be used to document	
20	the actions taken to respond to each finding,	
21	and the process to be used to communicate	
22	BNI's actions to the HIRT team for review and	

		
		Page
1	eventual closing of the findings.	
2	The closure plan also identified	
3	which recommendations will be implemented by	
4	BNI and which will not. DOE and BNI have	
5	still not completed the final design method to	
6	implement the revised safety design strategy	
7	for HPAV. Further, several elements of the	
8	revised HPAV safety design strategy have never	
9	been completed.	
10	I'm going to repeat that because	
11	it goes to the heart of the staff's concerns.	
12	There are several elements of the safety	
13	strategy that have never been completed and	
14	those are the methodology for the QRA, the	
15	requirements for qualification of inline	
16	components, and the final set of calculations	
17	supporting the design criteria.	
18	BNI is still working to resolve	
19	findings from the HIRT and several of the	
20	findings are significant. The staff cannot	
21	complete its reviews of the HPAV safety design	
22	strategy until the methodology and the overall	

approach have been completed and examples of 1 2 its use have been demonstrated. 3 There are three key aspects of the 4 strategy that must be completed or resolved. 5 Those are the ORA, development of the safety 6 basis to implement the strategy and the 7 resolution of the HIRT findings. 8 The staff is concerned that DOE's use of QRA, which is the most important aspect 9 of the revised hydrogen in pipes strategy that 10 11 remains to be completed. It is also the most 12 novel element of the revised strategy in that 13 DOE has never before attempted to use a 14 probabalistic design tool like the QRA to design the primary confinement boundary for a 15 16 nuclear facility. 17 BNI is using the QRA to predict 18 both frequency and peak pressure of the range 19 of potential hydrogen explosions in the WTP 20 This information is used to develop piping. 21 process piping response that is then compared 22 to BNI's design criteria to determine if the

> Neal R. Gross & Co., Inc. 202-234-4433

Page 48

piping can withstand the explosion. 1 2 For those cases in which the pipe 3 is predicted to deform beyond the allowed 4 criteria, the piping system is redesigned or 5 an active control is determined to be 6 necessary. 7 There are several noteworthy 8 concerns regarding the use of QRA for the WTP. 9 First, and I am repeating this, there are no 10 DOE requirements to govern the use of QRA to 11 ensure it is properly incorporated into the nuclear safety basis. Second, DOE's current 12 13 safety-related orders and standards typically 14 require the use of a deterministic approach to develop the nuclear safety basis. 15 16 Lastly, the assumptions used to 17 develop the QRA fault trees and establish 18 event frequencies and severities become part of the safety basis. These assumptions must, 19 20 therefore, be protected in the same fashion as 21 all other safety and design basis assumptions. 22 DOE requires that each nuclear

Page 50 facility operate within the constraints formed 1 2 by its safety and design basis. This ensures 3 that each facility is operated safely. For WTP this means that the final documented 4 5 safety analysis must incorporate each aspect 6 of the QRA with the potential to impact the 7 safety and design basis. The staff believes that this will 8 9 be a complicated undertaking made even more difficult by the fact that WTP is a one-of-a-10 11 kind facility. There are no DOE standards or 12 requirements for the use of QRA nor 13 expectations for controlling the assumptions 14 from the QRA in the safety basis. It is not clear whether DOE intends to develop a set of 15 16 order requirements and standards applicable to 17 the use of QRA before allowing its use in the 18 WTP. 19 BNI and its subcontractors must 20 still complete the calculations and reports 21 that form the design strategy. Many of these 22 calculations will require review by the HIRT

to determine whether their findings have been 1 2 resolved. 3 DOE and BNI have developed a very 4 aggressive schedule for resolution of the HIRT 5 findings. It is not clear what involvement 6 the HIRT has had in the proposed resolution of 7 their findings. The staff believes that the 8 actions needed to resolve many of the findings 9 will require considerable effort and are technically difficult. 10 Several findings will likely 11 12 require additional testing. The staff believes the following findings in particular 13 14 will demand considerable effort and will be 15 difficult to accomplish in the proposed 16 schedule. Finding 2.4, the need to consider 17 18 plant level events in the QRA models, requires 19 the QRA to be expanded to address plant-wide 20 events that contribute to event duration. 21 Finding 2.7, the enhanced treatment of 22 phenological uncertainties addresses

		Page	52
1	uncertainties regarding the gas pocket		
2	formation and hydrogen combustion.		
3	Lastly, combining two findings,		
4	3.6 and 3.7, regarding simulant selection for		
5	gas testing, the HIRT found that the simulant		
6	used to perform gas testing was not properly		
7	documented and that the range of yield		
8	stresses, one of the most important parameters		
9	used in gas testing and QRA calculations, must		
10	be revised or justified in the terms of		
11	expected behavior of the waste.		
12	The staff believes that these		
13	latter two findings if not adequately		
14	addressed will prevent the QRA's use. The		
15	calculations to determine the bubble size form		
16	the basis for determining the frequency and		
17	severity of hydrogen explosions.		
18	The staff does not believe that		
19	the simulant, Laponite, used by BNI to perform		
20	bubble tests, adequately represents the waste		
21	found in WTP and that additional testing is		
22	required to properly resolve these findings.		

Page 53 In its response to the HIRT 1 2 finding BNI acknowledge that additional 3 testing might be needed. However, DOE and BNI 4 did not appear to have allotted the time 5 needed to conduct the testing and adequately 6 resolve the issue. 7 DOE is committed to resolve HIRT 8 findings and plans to include HIRT members in 9 the resolution process. The Board staff believe this is an important facet of 10 finalizing the design basis for hydrogen 11 12 controls. 13 That completes my prepared 14 testimony and we would be happy to try to 15 answer any Board questions. 16 CHAIRMAN WINOKUR: Thank you, Mr. Kasdorf. 17 18 Do Board members have any 19 questions of the staff? If not, I would like 20 to invite the panel of witnesses from the 21 Department of Energy, its contractor 22 organizations, and its experts to take their

		Page	54
1	seats. I would like to introduce them.		
2	Dr. Ines Triay is the Assistant		
3	Secretary of Energy for Environmental		
4	Management. Mr. David Brockman is the Manager		
5	of DOE's Office of River Protection. Mr.		
6	Knutson is the DOE Project Manager for the		
7	Waste Treatment Plant. Mr. Russo is the		
8	Bechtel Project Director for the Waste		
9	Treatment Plant.		
10	Mr. Ashley is the Bechtel		
11	Engineering Director for the Waste Treatment		
12	Plant. Mr. Sain is the URS Executive Vice		
13	President for Performance Assurance and		
14	Operations. Ms. Busche is the URS Nuclear		
15	Safety Manager for the Waste Treatment Plant.		
16	Dr. Joseph Shepherd is Professor		
17	of Aeronautics and Mechanical Engineering at		
18	the California Institute of Technology. He		
19	provided consulting experience to DOE on		
20	detonations and deformations.		
21	Does any member of the panel wish		
22	to submit testimony at this time? We have a		

		Pa
1	lot of material to cover at this hearing. The	
2	Board has chosen its panelists carefully and	
3	request that panelists alone answer questions	
4	that are directed to them to the best of their	
5	ability. If the panelists would like to take	
6	a question for the record, their answer to	
7	that question will be entered into the record	
8	of this hearing at a later time.	
9	With that, we will begin the panel	
10	session with a question from Ms. Roberson.	
11	VICE CHAIR ROBERSON: Good	
12	morning. My first question is to you, Mr.	
13	Ashley. Can you provide for us an estimate of	
14	a flammable gas that will evolve in the WTP on	
15	a daily basis and what fraction of that will	
16	be in piping and inline components?	
17	MR. ASHLEY: We can provide that	
18	for the record but I cannot. In terms of	
19	total volume of flammable gas we do evaluate	
20	dependent upon the feed stream. It is very	
21	dependent upon the feed stream and it's very	
22	dependent upon the locations and the	

I

Page 56

1	conditions and the temperature.
2	One thing that I would like to
3	clarify in the previous testimony from Mr.
4	Kasdorf, he indicated that the predominant
5	mechanism for generation of the flammable
6	hydrogen gas in the Waste Treatment Plant was
7	radiolysis. In fact, the predominant
8	mechanism is thermolysis on the side of the
9	process where organics are present. That is
10	an important clarification.
11	VICE CHAIR ROBERSON: Let me ask
12	you the estimate that you will provide for the
13	record that you are using in your design does
14	it include both gases that are entrained in
15	the waste when the waste enters the pipe and
16	gas that is generated during the time that
17	it's in the pipe?
18	MR. ASHLEY: Our estimates do
19	include the total gases that are expected to
20	be present in all phases of the process.
21	VICE CHAIR ROBERSON: So it does
22	include entraining?

Page 57 MR. ASHLEY: That's correct. It's 1 2 the gases that are generated and the gases 3 that are present inline, the gases that are 4 generated and the gases that are present in 5 the vessels. 6 VICE CHAIR ROBERSON: And how do 7 you -- what is your basis for the amount of 8 gas that is entrained? What is your basis of 9 estimate for that? MR. ASHLEY: The basis of estimate 10 are correlations done from studies in the tank 11 12 farms. There is a specific correlation that 13 has been reviewed previously by the Defense 14 Board staff. That hydrogen generation correlation is used in the Waste Treatment 15 16 Plant. 17 VICE CHAIR ROBERSON: Okay. The 18 assumed gas composition is based on inputs 19 from the Hu correlation like the concentration 20 for the Hu nuclei. Right? 21 MR. ASHLEY: The Hu correlation. 22 VICE CHAIR ROBERSON: Right, Hu.

		Page 58
1	I'm from Alabama. The HIRT recommended	
2	accounting for nitrogen gas and nitrous oxides	
3	as a function of waste processing. Will the	
4	project develop new correlations to account	
5	for the generation of nitrogen and nitrous	
6	oxide?	
7	MR. ASHLEY: The nitrous is	
8	assumed. The most energetic of the potential	
9	hydrogen events is the combination of hydrogen	
10	with nitrous. The nitrogen is a diluent and	
11	the questions that were asked by the HIRT was	
12	the diluent actually could cause the	
13	generation or the creation of a larger bubble	
14	which could actually affect the	
15	characteristic, though a less energetic event	
16	could actually be a longer run-up to the	
17	event. In essence what that means is that the	
18	ultimate event could potentially be larger so	
19	that is being evaluated as part of response to	
20	the HPAV IRT [Hydrogen Pipes and Ancillary	
21	Vessels Independent Review Team] finding.	
22	VICE CHAIR ROBERSON: Go ahead.	

Page 59 I just want to 1 CHAIRMAN WINOKUR: 2 go back to a previous question that Ms. 3 Roberson asked. You are going to understand 4 the amount of hydrogen both in entrainment 5 into the vessels that's coming into the 6 facility. Correct? 7 MR. ASHLEY: Correct. 8 CHAIRMAN WINOKUR: That will 9 depend upon what's in the batch that's coming 10 in to be processed. 11 MR. ASHLEY: That's correct. 12 CHAIRMAN WINOKUR: So consequently there is a need at the tank farms to be able 13 14 to understand what is being delivered to the 15 Waste Treatment Plant. 16 MR. ASHLEY: Correct. CHAIRMAN WINOKUR: And how well 17 18 can you determine that what's coming in in a 19 given batch? What are you shooting for, five 20 percent, 10 percent, 15 percent? 21 MR. ASHLEY: There is a 22 requirement in ICD-19 [Interface Control

		Page
1	Document 19]. The batch is sampled. The	
2	batch is tested to determine what the hydrogen	
3	generation rate will be for the batch as it	
4	comes into the WTP. That then will be	
5	verified against the waste acceptance criteria	
6	that has been a control in the ICD-19 and	
7	remains a control in the ICD-19.	
8	CHAIRMAN WINOKUR: So after this	
9	whole process is done you'll determine a waste	
10	acceptance criteria in terms of the hydrogen	
11	generate that you can tolerate in this QRA	
12	methodology and analysis?	
13	MR. ASHLEY: No. If you think	
14	about it, what we are doing is a conservative	
15	analysis based on hydrogen generation rates.	
16	We don't intend to have a specific	
17	revaluation. It's an incoming waste	
18	acceptance.	
19	It will be compared against the	
20	criteria that has been applied through the	
21	QRA. It is an acceptance criteria for the	
22	waste. It doesn't rely on getting that	

		Page
1	specific batch prepared, measuring the	
2	hydrogen generation rate, and then reanalyzing	
3	through a QRA.	
4	It is done in advance. It is done	
5	based on conservative hydrogen generation	
6	rates through the QRA. The waste acceptance	
7	criteria will ensure that those requirements	
8	are not exceeded.	
9	VICE CHAIR ROBERSON: Okay. I'm	
10	not sure I understood your response. Will you	
11	need new correlations or not?	
12	MR. ASHLEY: We will not.	
13	VICE CHAIR ROBERSON: Okay. Is	
14	the bubble logic currently used in the QRA a	
15	conservative estimate of the hydrogen in the	
16	pipe hazard?	
17	MR. ASHLEY: The bubble logic and	
18	the way the bubbles are considered is	
19	conservative. There were questions that were	
20	asked through the HPAV IRT in terms of	
21	evaluating the radiology to determine if our	
22	experiments, in fact, provide those	

	Page 6	2
1	conservative representations. We are in the	
2	process of evaluating that but the way we	
3	treat the bubble and the shape of the bubble	
4	is conservative.	
5	VICE CHAIR ROBERSON: Mr. Ashley,	
6	the testing conducted by your contractor used	
7	Laponite to develop the QRA. Right?	
8	MR. ASHLEY: That's correct.	
9	VICE CHAIR ROBERSON: The HIRT	
10	had two findings, F36 and F37	
11	MR. ASHLEY: That's correct.	
12	VICE CHAIR ROBERSON: that	
13	question the basis for the selection and	
14	suggested additional testing might be	
15	required. In your closure plan you indicate	
16	that the waste properties used in the QRA will	
17	be consistent with the documented properties	
18	for the route being evaluated.	
19	MR. ASHLEY: That's correct.	
20	VICE CHAIR ROBERSON: What is the	
21	source of the documented properties?	
22	MR. ASHLEY: Once again, if you	

		Pa
1	look at the flow sheet, we have various	
2	stages. We have the received waste. We	
3	understand the radiological properties of the	
4	received waste. Then as we process the waste	
5	we have controls on how we process that waste.	
б	As it transitions from, in effect,	
7	a Newtonian behavior to a non-Newtonian	
8	behavior after leach ultra-filtration, which	
9	is concentration and wash. The properties	
10	will be consistent in the route with the	
11	expected properties. The reason for Laponite	
12	is Laponite exhibits a non-Newtonian.	
13	Another reason for the use of	
14	Laponite is very simple; it's clear. If	
15	you're measuring and trying to observe bubble	
16	formation, you need a clear simulant. If we	
17	went to a non-Newtonian simulant that was	
18	based on clays, for example, you couldn't	
19	observe bubble formation. It's very simple,	
20	the Laponite. It's a non-Newtonian fluid and	
21	it allows for observations that were necessary	
22	to measure bubble formation when gas is	

Neal R. Gross & Co., Inc. 202-234-4433 Page 63

Page 64 released. 1 2 VICE CHAIR ROBERSON: Is the 9805 3 report the same documented properties for 4 mixing? Are the documented properties you're 5 talking captured in the 9805 report? 6 MR. ASHLEY: The radiological 7 properties are going to be dependent upon the 8 system plan that's provided by the tank farm for each of the feeds that come in. 9 10 VICE CHAIR ROBERSON: Okay. MR. ASHLEY: I received a note and 11 12 I do need to clarify we do not estimate the 13 dissolved or entrained hydrogen. We measure 14 the gas that evolves from the waste. 15 VICE CHAIR ROBERSON: Okay. 16 MR. ASHLEY: I do want to clarify. I did misstate. 17 18 VICE CHAIR ROBERSON: Let me just 19 ask you. With that in mind then, your 20 estimate is conservative. How do you validate 21 that conservatism with that correction in 22 mind?

Page 65

		Ρa
1	MR. ASHLEY: The conservatism in	
2	terms of the hydrogen generation rates have	
3	been evaluated relative to the correlation,	
4	the Hu correlation, and the processes of	
5	hydrogen generation to determine exactly what	
6	the margin is in our estimation of hydrogen	
7	generation versus what the expected is from	
8	both the hydrolytic and thermolytic reactions.	
9	That was reviewed in substantial	
10	detail by one of the experts that was on the	
11	HPAV Independent Review Team also confirming	
12	the conservatism. In fact, in the HPAV one of	
13	the topical reports that's part of the HPAV	
14	IRT report it specifically plots that	
15	conservatism in the hydrogen generation rate	
16	versus what the expected actual generation	
17	rates are.	
18	VICE CHAIR ROBERSON: Let me just	
19	make sure I don't stumble over this and make	
20	sure I understand. In your response to the	
21	Board and the response in the closure plan to	
22	the HIRTS issue the documented properties, as	

		Page
1	I just understood you to say, will be the	
2	result of a flow sheet and testing provided by	
3	the tank farm.	
4	MR. ASHLEY: Our flow sheet when I	
5	talk about the properties and how the	
6	properties of the waste stream change as they	
7	go through the WTP, the tank farm doesn't	
8	control that. The tank farm is controlling	
9	the properties of the waste as we receive it.	
10	Once we start to process that	
11	waste through our leach ultra-filtration	
12	concentration and wash process those	
13	radiologic properties do change. In terms of	
14	bubble formation specifically depending upon	
15	if we're in the post-leach ultra-filtration,	
16	which is concentration and wash side, the	
17	radiological properties are non-Newtonian, or	
18	primarily non-Newtonian.	
19	The Newtonian side obviously there	
20	is a different mechanism for the release of	
21	gas into those systems. The hold up of	
22	bubbles in a non-Newtonian slurry are	

1		
		Page
1	different. As I stated, the use of the	
2	Laponite has non-Newtonian properties and	
3	that's why the experiments were done with	
4	Laponite.	
5	VICE CHAIR ROBERSON: Okay.	
6	Maybe I'm just not communicating or maybe I	
7	don't understand what you're saying. You	
8	indicate that the waste properties used in the	
9	QRA will be consistent with the documented	
10	properties for the route being evaluated.	
11	MR. ASHLEY: Correct.	
12	VICE CHAIR ROBERSON: Okay. What	
13	are the properties and where are they coming	
14	from?	
15	MR. ASHLEY: The properties are	
16	coming from our flow sheet. In other words,	
17	the non-Newtonian properties are the waste so	
18	post-leach we have a range of expected non-	
19	Newtonian properties from the sheer stress of	
20	30 pascals to a viscosity of 30 centipoises	
21	down to a low range of properties that is more	
22	in the range of six pascals, six centipoises.	

1		
		Page
1	That is the range of expected	
2	properties on the non-Newtonian side of our	
3	process. That is important in terms of the	
4	generation of gas and the release of the	
5	bubbles within that slurry and how the bubbles	
6	form.	
7	VICE CHAIR ROBERSON: So really	
8	we're talking the same properties we discussed	
9	at length in the mixing session yesterday?	
10	MR. ASHLEY: That's correct.	
11	That's correct because, you know, our piping	
12	this is a batch process. Our piping	
13	transfers from one batch or one unit operation	
14	to the next.	
15	As we concentrate slurries we are	
16	creating a non-Newtonian slurry. We transfer	
17	that non-Newtonian slurry down to the next	
18	unit operation in the process. Obviously the	
19	mixing system then has to deal with that waste	
20	that has those specific properties.	
21	VICE CHAIR ROBERSON: Okay.	
22	Thank you.	

Page 69

1	CHAIRMAN WINOKUR: Let me
2	understand something about what you just said
3	about the mixers. One of things we didn't get
4	much of an opportunity to discuss yesterday
5	were these pump-out experiments that you had.
6	A little bit we discussed it.
7	I think when you were doing the
8	pump-outs you noticed that you had in the
9	batches initially a lot of clearing of some of
10	the heavier dense particles and the fissile
11	materials and so on and so forth came out in
12	like the first quarter batch. Right?
13	Can you account for that in the
14	piping in terms of what's going into the
15	piping in terms of hydrogen generation rates
16	that you might be getting? You're not going
17	to get a uniform feed from the vessels. You
18	could get a very different kind of feed is
19	what I heard yesterday. How do you account
20	for that?
21	MR. ASHLEY: Once again, it is
22	important to separate the size of the process.

		Ρ
1	What we talked about and what Dr. Dickey	
2	talked about, the tests that we ran were on	
3	the Newtonian mix. In effect, that's one of	
4	our most challenging vessels is what we call	
5	the HLP-22 [High-level Waste Lag Storage and	
6	Feed Blending Process System] vessel.	
7	That's the feed receipt vessel.	
8	That comes in as a Newtonian mix. Non-	
9	Newtonian is similar to your paint. It's	
10	similar to ketchup. The Newtonian mix is	
11	basically particles in water or particles in	
12	a relatively low velocity fluid.	
13	When we talked about the segregation	
14	of the fast settling particles and the	
15	distribution of those particles in that vessel	
16	with the larger, faster settling particles	
17	being more towards the bottom of the vessel,	
18	we're talking about these Newtonian vessels	
19	like HLP-22.	
20	Now, as we move to the non-Newtonian	
21	side, and we did a much larger scale of non-	
22	Newtonian testing at PNNL [Pacific Northwest	

		Page
1	National Lab] that was done in the '03 to '05	
2	time frame to really look at what the best	
3	design for the mixing systems in non-	
4	Newtonian. Very different.	
5	What you see is you see those	
6	vessels are more homogeneously mixed. Once we	
7	do shear the non-Newtonian fluids, though,	
8	there is the potential for larger or fast	
9	settling solids to settle. However, the	
10	properties of the non-Newtonian fluid which	
11	have essentially being plastic properties end	
12	up with apparent velocity that actually	
13	reduces the settling rate of those large	
14	particles.	
15	We have evaluated that on the mixing	
16	side as well so that the behavior in the mixed	
17	vessels on the Newtonian side is different	
18	than the behavior of the vessels on the non-	
19	Newtonian side of the process.	
20	CHAIRMAN WINOKUR: My question was	
21	really a lot simpler. Thank you. I just want	
22	to know I mean, you're mixing these things	

		Page 72
1	in the tanks and you just told me you measured	
2	the hydrogen gas to get a measure of what the	
3	hydrogen generation rate is going to be.	
4	When you think about the tank farms	
5	you have to ask questions about how uniform is	
6	it the batch you're going to be sending over.	
7	Are you adequately mixing it in the tanks. Do	
8	you really have a representative sample. I'll	
9	put that aside for a second.	
10	Now, you get into the vessels. We	
11	know that these vessels are not going to	
12	uniformly mix the waste. We know its	
13	stratified, especially for the denser and the	
14	fissile materials. When you start to transfer	
15	waste into pipes, you don't really have an	
16	average value of hydrogen generation weight	
17	going into those pipes. Do you? I mean, the	
18	generation rate could be more depending upon	
19	the batch you transfer or less. I'm just	
20	trying to get a sense if that's accounted for.	
21	MR. ASHLEY: It's correct that the	
22	slurry content could change from the top of	

Page 73 the vessel. As we start to transfer the fluid 1 2 in the vessel it could change with a higher concentration of solids as we pump out the 3 4 lower portion of the vessel actually, which is 5 the first quarter batch that comes out. Then 6 obviously a lower concentration of solids as 7 we get to the top of the vessel. 8 I think what you find are the 9 smaller particles tend to mix more completely. 10 Even the denser smaller particles, a 10 micron 11 particle of plutonian oxide we actually find 12 mixes fairly well. Smaller particles tend to mix much better than the larger heavier 13 14 particles as we talked about yesterday. We believe there is sufficient 15 16 conservatism in the HGR [Hydrogen Generation Rate] rates that that stratification that we 17 18 expect in these vessels is accounted for. 19 CHAIRMAN WINOKUR: All right. 20 That's what I was trying to get to. You're 21 saying you've accounted for the fact that when 22 each core -- when the batches are transferred

		Page	74
1	there may be differences in hydrogen		
2	generation rate. That's accounted for and		
3	it's conservatively accounted for.		
4	MR. ASHLEY: There could be		
5	differences. Just to give you also		
6	perspective, I'm being flooded with note cards		
7			
8	VICE CHAIR ROBERSON: Must be a		
9	sign of something.		
10	MR. ASHLEY: To give you a		
11	perspective, Ms. Roberson did ask what		
12	quantity of hydrogen are we talking about. We		
13	are talking about .1 milliliter of hydrogen		
14	per liter of waste per hour just to give you		
15	a perspective on quantity.		
16	MEMBER BADER: Let me help you with		
17	this.		
18	CHAIRMAN WINOKUR: Mr. Bader has a		
19	question.		
20	MEMBER BADER: Mr. Ashley, you must		
21	be saying something highly controversial.		
22	Would you like to either call a friend or poll		

<pre>P 1 the audience? 2 MR. ASHLEY: These are my helpers. 3 They are providing me information. 4 VICE CHAIR ROBERSON: Okay. Dr. 5 Shepherd, thank you for joining us today. 6 Welcome.</pre>	Page
 MR. ASHLEY: These are my helpers. They are providing me information. VICE CHAIR ROBERSON: Okay. Dr. Shepherd, thank you for joining us today. 	
 3 They are providing me information. 4 VICE CHAIR ROBERSON: Okay. Dr. 5 Shepherd, thank you for joining us today. 	
4 VICE CHAIR ROBERSON: Okay. Dr. 5 Shepherd, thank you for joining us today.	
5 Shepherd, thank you for joining us today.	
6 Welcome.	
7 DR. SHEPHERD: Good morning.	
8 VICE CHAIR ROBERSON: Good morning.	
9 You conducted a review of BNI's calculations	
10 and modeling of a gas explosion phenomena.	
11 What specific concerns or issues did you	
12 provide to the project or identify to the	
13 project?	
14 DR. SHEPHERD: Thank you. Yes. I	
15 conducted many reviews of many documents. I	
16 actually anticipated this and tried to count	
17 them. I can't give you an accurate number.	
18 I think it was somewhere between the order of	
19 50 and 100 documents. The number of formal	
20 reviews I submitted are somewhat smaller.	
21 My concerns range all the way from	
22 details of symbols and equations to the	

		Ρ
1	overall approach to the analysis of how data	
2	is being used, how computer simulations have	
3	been validated. We spent substantial amount	
4	of time early in the program in looking at	
5	just what the approach was to analyzing	
6	explosions.	
7	VICE CHAIR ROBERSON: I understand	
8	there is a broad range. For example, in a	
9	letter to DOE on March 27th of 2010 you raised	
10	a specific set of issues. Could you describe	
11	those specifically?	
12	DR. SHEPHERD: That was dealing with	
13	some calculations that were ongoing. Those	
14	calculations are still ongoing. The issues	
15	there had to do with I believe what I need	
16	to do actually is look at what that was. I	
17	think that's in the book here.	
18	VICE CHAIR ROBERSON: Absolutely.	
19	CHAIRMAN WINOKUR: We would be happy	
20	to receive that for the record,.	
21	DR. SHEPHERD: It's fairly	
22	straightforward so all I have to do is find my	

Neal R. Gross & Co., Inc. 202-234-4433 Page 76

		Page	77
1	dog-eared corner here and then I can talk	_	
2	about that. Where did it go? I noticed that		
3	you had a special session section here just		
4	for me. So which question was that? Help me		
5	out here.		
6	VICE CHAIR ROBERSON: It was March		
7	27.		
8	DR. SHEPHERD: Right. I guess what		
9	I would like to do is then respond to that for		
10	the record since I don't have it in front of		
11	me.		
12	VICE CHAIR ROBERSON: Okay. We'll		
13	probably ask you questions from that since		
14	we've seen it but I think that is perfectly		
15	fine. Go ahead. Let me just ask you a few		
16	specific questions and I'm sure my colleagues		
17	will have others as well.		
18	Dr. Shepherd, you reviewed the		
19	design criteria for the design of the piping		
20	and inline components potentially subjected to		
21	hydrogen explosions. Do you based upon your		
22	review believe that the criteria are adequate		

		Page 78
1	to protect ductile failure of a pipe in the	
2	case of inline component failure of the	
3	primary boundary?	
4	DR. SHEPHERD: I think it's	
5	important here to distinguish that there are	
6	a number of different components in the WTP.	
7	There's piping.	
8	VICE CHAIR ROBERSON: Um-hum.	
9	DR. SHEPHERD: There are components	
10	such as valves and pumps and then there are	
11	pressure vessels. Which particular pieces are	
12	you referring to, Ms. Roberson?	
13	VICE CHAIR ROBERSON: I'm asking	
14	you in your opinion do the criteria applied to	
15	inline components provide the same level of	
16	assurance as the piping design criteria?	
17	DR. SHEPHERD: What I believe is	
18	that those criteria are appropriate. The ones	
19	that have been developed are broadly	
20	applicable to the entire facility, but	
21	particular cases need to be examined and that	
22	is something that I've encouraged the DOE to	

		Page 79
1	do. The most focus has been on piping to date	
2	and piping systems. I've encouraged the DOE	
3	to look at the components such as valves,	
4	pumps, so forth, separately. I know they have	
5	a separate program looking at the vessels.	
6	VICE CHAIR ROBERSON: Okay. Let me	
7	ask you a connected similar question. In your	
8	opinion are the calculations and models used	
9	to predict a pipe's response to a gas	
10	explosion adequate for predicting plastic	
11	deformation in the piping system at WTP?	
12	DR. SHEPHERD: My answer is a	
13	qualified yes because we always have to	
14	discuss what the extent of the plastic	
15	deformation is that is being considered and	
16	for modest amounts of plastic deformation the	
17	types that are being anticipated as being	
18	acceptable I believe that they are.	
19	VICE CHAIR ROBERSON: Do you	
20	believe in your expert opinion that BNI's	
21	overall approach allows them to accurately	
22	predict the amount of plastic deformation?	

Page 80 DR. SHEPHERD: I think it's 1 2 important to understand that we are not 3 talking about making accurate predictions 4 because we don't actually have inputs which 5 would allow us to do that. 6 If we had a definite loading 7 function and we said this is the loading 8 function, I believe that the methods that they 9 re developing are appropriate for that, although that has not been the focus of the 10 program at this point to develop a highly 11 12 accurate plastic deformation prediction tool, nor do I believe it's necessary to do so. 13 14 We are doing safety analysis and in 15 safety analysis what you're concerned with is 16 making sure that you have bounding 17 calculations. I believe that they are 18 developing methods which are appropriately 19 bounding. 20 VICE CHAIR ROBERSON: Okay. Let me 21 ask you, the members of HIRT, which I assume 22 you've seen their report. I believe you

provided insight. 1 2 DR. SHEPHERD: Yes. 3 VICE CHAIR ROBERSON: They observed 4 that the design criteria applied to the piping 5 system were adequate assuming that the inputs 6 into the analysis, i.e., the outputs of the 7 QRA, are accurate. Do you agree with that? 8 DR. SHEPHERD: Yes. 9 VICE CHAIR ROBERSON: I have just a couple of additional. 10 11 CHAIRMAN WINOKUR: Just give me an 12 intuitive feel for things. I was a scientist 13 once before I got on this Board and did 14 experiments and things. How complicated a 15 problem is this? How tough a problem is it to 16 be able to -- you know, we have to figure out what's actually going on, figure out how these 17 bubbles are formed, get an idea about 18 19 detonation events. How hard a problem is 20 Is this pretty well known in industry this? 21 what we're doing here? 22 DR. SHEPHERD: You know, the

		Pa
1	individual parts of it have been studied in	
2	great detail and so there are many folks who	
3	have made a living in academia and industry at	
4	looking at the various bits and pieces. So,	
5	for example, generation of gases due to	
6	radiolysis thermolysis; the motion of viscal	
7	elastic material and pipes; various aspects of	
8	deflagrations and detonations.	
9	There are entire journal symposia	
10	devoted to these things. The subject of	
11	detonation inside of pipelines is something	
12	that I've been working on for the last 20	
13	years. We have a substantial technical base	
14	on the individual aspects of this. What makes	
15	this problem interesting, difficult, and	
16	challenging is putting together a wide range	
17	of these things.	
18	The modern kind of buzz word that	
19	folks use in the academic community is that	
20	it's a multi-physics problem. You have a lot	
21	of things going on at different scales with	
22	different physical phenomena. Putting those	

I

Neal R. Gross & Co., Inc. 202-234-4433

Page 82

1	together in a way that it can be used as a
2	design tool by an engineering firm, that's the
3	thing that makes it challenging.
4	You're not going to hand a handful
5	of scientific papers to the engineers and say,
6	"Ah, there you go. Distill this with some
7	down and get some simple rules out of it and
8	you're done." What it takes doing is sorting
9	through defining what are the most important
10	phenomena that need to be addressed where you
11	can live with uncertainties because you're
12	always going to have uncertainties in a large
13	complex system where you need to really
14	sharpen up your tools and have an
15	understanding.
16	The challenges have been to bring
17	together all these desperate disciplines and
18	also think about it in terms which are terms
19	of safety. Quite frankly, the word risk is a
20	very important word here assessing the risk.
21	How do all of these different physical
22	phenomena come into creating this thing that

Page 83

Page 84

we call risk.

1

2	CHAIRMAN WINOKUR: Are you familiar
3	with situations in industry where people have
4	actually calculated what these probability
5	distributions would be for the frequency and
б	the magnitude of detonations in the kind of
7	situation that we're dealing with here?
8	DR. SHEPHERD: Yes. The chemical
9	industry, particularly the high hazard
10	chemical industry that is involved with
11	working with high-pressure ethylene.
12	Generating polyethylene is a good example.
13	That's an activity where you have potential
14	explosive gases and very high pressure,
15	complex petrochemical plants.
16	We had an example recently that
17	happened in the Gulf of Mexico where we had a
18	very serious accident that happened at Deep
19	Water Horizon. There were accidents that have
20	happened on off-shore dwelling platforms.
21	There was a very intensive effort
22	that took place in looking at the platforms in

		Page	85
1	the North Sea starting with the Piper Alpha		
2	explosion in the late 1980s. A very intensive		
3	effort in the European community of looking at		
4	siting high-hazard chemical plants in highly-		
5	populated areas.		
6	Various organizations like TNO		
7	[Netherlands Organisation for Applied		
8	Scientific Research] in the Netherlands have		
9	played a very active role in that. In the		
10	chemical process industry, in fact, there is		
11	a whole groups of people. The Center for		
12	Chemical Process Safety is one of those. It		
13	comes out of the AIChE [American Institute of		
14	Chemical Engineers] that is involved with		
15	that.		
16	CHAIRMAN WINOKUR: Do these		
17	applications allow defamations of the pipes?		
18	Is that a typical thing to do?		
19	DR. SHEPHERD: One of the things		
20	that you have to decide is you have to decide		
21	how much you are going to place emphasis on		
22	your design case and what are going to be		

Page 86

exceptions.

1

2	What are things that are going to be
3	very unlikely things that are going to happen
4	that you may wish to accommodate through
5	plastic deformation. A very typical way to
6	think about this kind of problem is risk is a
7	combination of consequence and likelihood. At
8	the same time many commercial organizations
9	and also government organizations are thinking
10	about containing cost.
11	Also the speed with which a plant
12	can be designed Sometimes you find in that
13	space of risk that there may be some very
14	highly unlikely events. As long as the
15	consequences of those are not too high, you
16	might allow plastic deformation to occur.
17	CHAIRMAN WINOKUR: But they don't
18	typically allow for plastic deformation? It's
19	an incredible event you're telling me or an
20	extremely unlikely event. Is that what I
21	heard?
22	DR. SHEPHERD: So we have to be

careful about this because, in fact, plastic 1 2 deformation is allowed routinely in certain 3 types of motions within the piping code. 4 Something to be clear about here is that 5 plastic deformation is not a terrible thing 6 and often you have to allow some amount of 7 what is called small-scale yielding to occur. 8 Otherwise, it wouldn't be possible 9 to put it together. It's a very large system with large dimensions. Everything is not 10 11 going to fit quite right and you have thermal expansion when things move around. 12 13 If you have deformation that occurs 14 through beam bendings, if you have a pipe and 15 the pipe is being bent like a beam like this, 16 you can accommodate plastic deformation and 17 the piping code actually allows for some of 18 The question really is what is the that. extent that you are going to allow. 19 20 I think as long as that extent does 21 not affect your safety basis, I think it's 22 perfectly okay to allow it as long as you are

> Neal R. Gross & Co., Inc. 202-234-4433

Page 87

		Page	88
1	very carefully understanding what the basis is		
2	for the interest of that and that's where the		
3	QRA comes in.		
4	CHAIRMAN WINOKUR: What is a typical		
5	extent and percent of deformation, for		
6	example, that you would allow?		
7	DR. SHEPHERD: You can allow several		
8	percent deformation particularly in piping on		
9	a regular basis.		
10	CHAIRMAN WINOKUR: Okay.		
11	VICE CHAIR ROBERSON: I just have		
12	one more question for you, Dr. Shepherd.		
13	DR. SHEPHERD: Yes.		
14	VICE CHAIR ROBERSON: You also		
15	reviewed the testing program for Southwest		
16	Research. Did you raise any concerns about		
17	the quality of data utilized in that testing		
18	program?		
19	DR. SHEPHERD: I had input into		
20	various aspects of that program. One of the		
21	things that I also did was review the data		
22	after it was generated. I did have some		

I think in all of these test 1 concerns. 2 programs that one of the things in my own 3 program, and we do the same thing, we have to 4 very carefully vet the data. 5 You have to understand is what we're 6 looking at something that's physical or are 7 there artifacts. One of the things to keep in 8 mind is when you make measurements with gauges like strong gauges and you have very large 9 strains so basically what you're doing is 10 11 you've got a little piece of material that's 12 glued onto your pipe and when the pipe moves, and the pipe is moving only really microns is 13 14 what we're measuring, very small motions, but 15 these are very sensitive gauges. It's a beautiful little thing. 16 When 17 it's used properly it tells us what the 18 strains are. When you start to get large strains, then the motion of that little glued 19 20 on piece of foil is not necessarily going to 21 follow the pipe. 22 Over time that connection, that

> Neal R. Gross & Co., Inc. 202-234-4433

Page 89

		Page	90
1	glued connection that we basically put on		
2	there with Super Glue, can become degraded so		
3	you have to be careful is that the signal that		
4	you're looking at really reflective of the		
5	actual strains inside of the material.		
6	I had some concerns about some of		
7	the signals and they have addressed those.		
8	They have looked at those and they have done		
9	a careful examination of those. In fact, some		
10	of those strains are not going to be used in		
11	their evaluation of the data.		
12	VICE CHAIR ROBERSON: You want to		
13	ask something else?		
14	CHAIRMAN WINOKUR: Mr. Brown is		
15	going to have some questions but just before		
16	that one question from Mr. Bader.		
17	MEMBER BADER: Dr. Shepherd, you		
18	were making comparisons to the chemical		
19	industry and drawing value from that. Are		
20	those facilities easily inspected for		
21	excessive deformation?		
22	DR. SHEPHERD: Sometimes. Sometimes		

		Page	91
1	you have components that are inaccessible. In		
2	those situations you usually create a		
3	different set of rules. For example,		
4	analogous to what you have, the difference		
5	between the hot cells and the black cells.		
6	MEMBER BADER: Staying with the hot		
7	cells, how would you compare the assessability		
8	for inspection and repair in the hot cells		
9	with inspection and repair in assessable		
10	facilities in the chemical industry?		
11	DR. SHEPHERD: Having never actually		
12	worked in a hot cell I guess I would have to		
13	defer with someone with more operating		
14	experience.		
15	MEMBER BADER: Would you believe		
16	the presence of high radiation fields might		
17	inhibit that?		
18	DR. SHEPHERD: Obviously you're not		
19	climbing down in there with a flashlight and		
20	a micrometer looking at it.		
21	MEMBER BADER: Also you mentioned		
22	you're dealing with multi-physics problems,		

		Page	92
1	desperate disciplines, and trying to assess		
2	the overall risk. When you combine that with		
3	the concerns about doing inspection and repair		
4	in radiation fields, do you believe that would		
5	call for an extra measure of conservatism?		
6	DR. SHEPHERD: I think that you have		
7	to weigh all of those things in deciding where		
8	you are going to come down in terms of how		
9	much conservatism you use.		
10	MEMBER BADER: I'm asking for your		
11	opinion as to whether you believe an extra		
12	measure of conservatism would be a prudent		
13	thing to do.		
14	DR. SHEPHERD: I think certainly we		
15	would all agree that when we treat these		
16	facilities with these special nuclear		
17	materials and the issues that you've raised		
18	and the other issues that we know exist here		
19	like criticality, certainly an extra measure		
20	of attention to these details is important.		
21	MEMBER BADER: I think that was a		
22	yes. Is that correct?		

Page 93 DR. SHEPHERD: I believe it's 1 2 important to pay very careful attention to all 3 of these matters when you go through it. I'll take that as a 4 MEMBER BADER: 5 Thank you, Peter. yes. 6 CHAIRMAN WINOKUR: Ms. Roberson. 7 VICE CHAIR ROBERSON: Okay. Thank 8 Just two or three more questions, Mr. you. 9 Chairman. 10 CHAIRMAN WINOKUR: Sure. 11 VICE CHAIR ROBERSON: Mr. Ashley, 12 given that it is a complicated venture as described by Dr. Shepherd and evidenced by the 13 14 HIRT review and the interaction between the 15 project and the Board, not withstanding the 16 Department's interest to develop this to further potential, broader use in the 17 18 Department, and also given your concern and 19 focus on schedule and cost control that you 20 and Mr. Russo reminded us of a number of times 21 yesterday, why has BNI proposed to the 22 project, to the Department, to pursue this

avenue rather than the better known and well 1 2 established deterministic approach? MR. ASHLEY: I need to start off and 3 4 say because I believe this is the right design 5 approach for this facility. The combination 6 of the need to ensure safety and the need to 7 ensure the operability of the facility results 8 in having to take a novel approach for a very 9 complex first-of-a-kind facility. I have been involved in nuclear 10 power facility design, nuclear design for my 11 12 entire career. The situation that you have to 13 address are what are the unique conditions, 14 what are the unique hazards associated with 15 each individual process or each individual 16 design. I believe that we have done that. 17 18 This provides us the opportunity to work 19 towards the best design for the facility. Our 20 ultimate goal we are not just designing a 21 facility and leave. I like to leave every 22 facility knowing that I have left the operator

> Neal R. Gross & Co., Inc. 202-234-4433

Page 94

		Page
1	with the best possible facility for them to	
2	complete their part of the mission. This is	
3	a methodology that we believe is very robust.	
4	Assures that we have high confidence	
5	that we maintain the primary boundary of this	
6	piping so that it can fulfill the mission. We	
7	believe that this criteria is consistent with	
8	methodology that has been applied in the	
9	nuclear industry in the past.	
10	VICE CHAIR ROBERSON: Thank you.	
11	MR. RUSSO: Ms. Roberson, if I can	
12	add just something from my perspective. When	
13	I came on the project the second question I	
14	asked after I learned everything I could about	
15	mixing and M3 was the very question you asked.	
16	Basically I was convinced after a	
17	great deal of discussion with Greg, and some	
18	with Dr. Shepherd and others, what Greg is	
19	saying is absolutely correct. Even though	
20	it's not necessarily the best thing for	
21	schedule, it is the best thing for the co-	
22	located worker.	

Page 96

1	Also, from the perspective of my
2	experience in the chemical industry, although
3	pleasure excursions here are not something
4	that we would ever anticipate or desire or
5	want, in the chemical industry the pressures
6	and temperatures they operate at you see the
7	results on the news sometimes when the entire
8	facility and three miles around it are
9	destroyed.
10	What I've seen the petrochemical
11	industry particularly do is if they have a
12	concern they go with much heavier wall pipe.
13	When their piping runs where they think there
14	can be some kind of pressure excursion and the
15	shell job being a perfect example. That was
16	a new technology.
17	Instead of coking, taking the carbon
18	out of the bitumen they put hydrogen in so it
19	was very highly explosive process if not
20	controlled. I saw some of the heaviest wall
21	thicknesses that I had ever seen on that
22	project.

1	VICE CHAIR ROBERSON: Ms. Busche.	Page 97
2	So, Ms. Busche, in the response to the Board's	
3	questions, Question 5E, "Doe indicated that	
4	one aspect of the change in approach from the	
5	original HPAV design criteria to the new HPAV	
6	design criteria was to determine if the	
7	project can replace an active control or	
8	barrier with passive control or barrier." I'm	
9	assuming this is the preferred approach from	
10	a nuclear safety perspective. You prefer to	
11	have a passive control?	
12	MS. BUSCHE: That is correct.	
13	VICE CHAIR ROBERSON: Okay. My	
14	last question to you, Mr. Ashley, with this in	
15	mind you are using this tool to help you	
16	determine active and passive control, again,	
17	with consideration of the pressures of the	
18	project. When I look at this simply, why	
19	isn't increasing the pipe schedule an option?	
20	MR. ASHLEY: It is.	
21	VICE CHAIR ROBERSON: So what is	
22	the balance between doing that and utilizing	

this too? Where is that line? What is that 1 2 decision process? The criteria enables 3 MR. ASHLEY: 4 those decisions. For example, if the current 5 anticipated design were what we call a 6 Schedule 40 pipe, which is from a process 7 standpoint is probably the minimum pipe size 8 meaning wall thickness that we have on the 9 project. 10 If the criteria as we went through 11 the analysis and the postulated events -- and 12 I call these postulated events. These are 13 what we postulate might happen or could 14 If we are unable to meet the criteria happen. 15 for that Schedule 40 pipe, the engineer's 16 first response could be to increase the 17 schedule of the pipe to Schedule 80 pipe. 18 In the current project we have put 19 the HPAV affected pipe, that's where we could 20 potentially postulate an event in four inch 21 and under pipe, though that pipe had been 22 procured some years ago prior to the evolution

> Neal R. Gross & Co., Inc. 202-234-4433

Page 98

Page 99

of how we were going to address the HPAV phenomena. We put that on hold because what we don't want to do is install any of that pipe and preclude the opportunity to increase the schedule of the pipe.

6 There are limits. The pipe has to 7 interface with other components like vessels. 8 We could go to Schedule 160 but Schedule 160 9 decreases the internal flow area of the pipe 10 and would require a more substantial redesign 11 of mechanical systems, reevaluating flows and pressures, so there is a limit to the schedule 12 13 of pipe that we could go to. But we will meet 14 our criteria to assure that we protect the 15 pressure boundary. If to do that requires the 16 increase in pipe schedule, that's what will be 17 done.

18 VICE CHAIR ROBERSON: What I just 19 heard you say is you need this tool to tell 20 you what pipe schedule to go to? 21 MR. ASHLEY: Design criteria very 22 simply tells an engineer what material do I

		Page	100
1	need to meet the design, what's the geometry		
2	of the material that I need to meet the		
3	design. That criteria drives the design.		
4	What we establish as our acceptance		
5	criteria very much drives the design. The		
6	design, the selection of a pipe schedule, the		
7	routing of a pipe, how I support the pipe.		
8	That's all driven by an acceptance criteria		
9	which assures the performance of that system.		
10	VICE CHAIR ROBERSON: Right. So		
11	you need this tool to inform you on pipe		
12	schedule selection?		
13	MR. ASHLEY: I need the full sweep		
14	of tools which is design criteria, which is		
15	the code, which is material properties		
16	associated with the code. I need to know the		
17	load. As an engineer I need to know what is		
18	the load that pipe is going to see. In this		
19	case it's a pressure response.		
20	Then I'm going to take that severity		
21	and frequency of that event and then I'm going		
22	to evaluate how my piping system and my inline		

Page 101

	F
1	components respond to that event. I'm going
2	to determine what the stressors are in that
3	pipe and in those components. I'm going to
4	determine what the loads are on the supports.
5	It's all part of the process of design.
6	VICE CHAIR ROBERSON: I'm going to
7	let somebody else ask questions, Mr. Chairman.
8	MR. DEWEY: Ms. Roberson, if I could
9	just follow up your question for a second.
10	So, let me try and ask it a different way.
11	You're going to use this tool and you're going
12	to say this particular run of pipe that we're
13	analyzing suffers three plastic deformations
14	of less than 2.5 percent strain so that's
15	acceptable.
16	MR. ASHLEY: No, that's not the way
17	we do design. Okay. What we do is we have to
18	start with what is the event that I'm
19	designing for. Then I take that event and I
20	analyze that system to see what that system's
21	response is to that load. We don't assume
22	that we are going to be at the high end of our

acceptance criteria. 1 2 I could have an HPAV event, a series 3 of HPAV events that could result in responses 4 that are well below the yield of the material, 5 that there is no plastic strains associated with that event. The criteria I must meet is 6 7 I must be below my acceptance criteria. 8 MR. DEWEY: Which are? 9 MR. ASHLEY: My acceptance criteria 10 in the hot cell is yield stress at .2 percent strain offset which is the elastic limit. 11 12 That is defined as the elastic limit. In the 13 hot 14 cell --MR. DEWEY: You said hot cell. 15 16 MR. ASHLEY: I'm sorry, black cell. 17 MR. DEWEY: Thank you. MR. ASHLEY: Black cell. 18 In the hot 19 cell it's 3 percent strain. Now, I must meet 20 the code so I must evaluate how many times 21 that event could occur or is postulated to 22 occur over the life of the facility because I

	Page 103
1	must evaluate the cumulative effect of
2	multiple events.
3	The rigor of this criteria is and
4	the reason that we need an estimate of
5	severity and frequency is I need to design for
6	the potential for multiple events and assure
7	that I maintain the pressure boundary of this
8	piping of that primary boundary over the life
9	of the facility.
10	MR. ASHLEY: Okay. And the "limit
11	number of events" is?
12	MR. DEWEY: It's a detailed fatigue
13	evaluation. We're limiting we believe an
14	appropriate limit would be three events of the
15	most severe event.
16	MR. ASHLEY: Okay. Let me try
17	again. You have a piping run for which you
18	have calculated that you will get, over the
19	life, the 2.5 percent strain event three times
20	and that would be acceptable but that will
21	cause plastic deformation.
22	MR. DEWEY: That's correct.

Page 104 MR. ASHLEY: Why, since you've 1 2 already said, "We'll adjust pipe schedule based on what we need, " why would you not just 3 4 say, "We'll not allow plastic deformation at 5 all. Go ahead and increase the pipe 6 schedule?" 7 MR. DEWEY: It meets criteria. For 8 the criteria we can maintain. If it were the 9 current design of Schedule 40 that meets the criteria. That is allowable. It then becomes 10 11 specific judgment as to whether I would want to increase the pipe schedule to Schedule 80 12 but our design will meet our established 13 14 criteria. MR. ASHLEY: And I'm still left with 15 16 why. If you could do it and not have plastic 17 deformation, why not? 18 MR. DEWEY: Would you take the same 19 approach in normal operating pressure design 20 for pipe that says I meet the code. I meet 21 the code allowable for normal operating load. 22 Why don't I just increase the pipe schedule to

	Page 105
1	the next schedule. It's not the way you do
2	design. You design to a criteria.
3	MR. ASHLEY: Correct. And in this
4	case you set a criteria that allows plastic
5	deformation.
6	MR. DEWEY: Correct.
7	CHAIRMAN WINOKUR: I have one more
8	quick question and then we're going to Mr.
9	Brown. That is when you have these plastic
10	deformation events you talk about, what is the
11	impact on the jumpers and other inline
12	connectors that the Board has expressed a lot
13	of concern about?
14	MR. ASHLEY: Inline components
15	complex inline components are not qualified by
16	analysis. They are not qualified to a strain
17	criteria. They will be qualified by test. We
18	did demonstration tests. Demonstration tests,
19	not qualification tests.
20	In the experiments at Southwest
21	Research on PUREX connectors, for example, we
22	did see limited plastic deformation with a

		Page
1	pressure reflected DDT [deflagration	
2	-to-detonation transition] during those tests.	
3	I want to put into perspective when we talk	
4	about three percent strain and people talk	
5	about bulging pipe, the PUREX connector we	
6	measured about 1.8 percent strain in the PUREX	
7	connector.	
8	It's 53 thousandths of an inch	
9	diametrical. Visual inspection would be	
10	unlikely to identify that level of plastic	
11	strain. When you talk about bulging pipe, you	
12	are generally talking about strains in the	
13	range of 25, 30 percent. We're talking three	
14	percent plastic strain.	
15	As Dr. Shepherd mentioned earlier,	
16	standard design in piping fittings	
17	acknowledges there is plastic strain during	
18	normal operating loads.	
19	CHAIRMAN WINOKUR: I'll probably	
20	come back to this a little later. I want to	
21	go to Mr. Brown now.	
22	MEMBER BROWN: Good morning. Thank	

		Page	107
1	you all for being here. I'm going to continue		
2	the questions which will be primarily Mr.		
3	Ashley and Dr. Shepherd, although I do have to		
4	ask should I call you Dr. Shepherd, Professor		
5	Shepherd, Dean Shepherd? Do you have any		
б	other titles that I've missed?		
7	DR. SHEPHERD: Just Joe.		
8	(Laughter.)		
9	MEMBER BROWN: That must be a		
10	California thing. I had the opportunity, this		
11	is kind of a side story, to be the driver for		
12	Condoleezza Rice when she went to meet Sandy		
13	Berger for the first time at the White House		
14	10 years ago.		
15	She had never met me before and so I		
16	helped her into the car and then I turned to		
17	her and I said, "Should I call you Provost or		
18	Dr. Rice or Professor Rice?" She said, "Just		
19	call me Condi." I guess that's a California		
20	thing. Just call me Joe.		
21	My questions are primarily on the		
22	testing program. I just want to go through		

	Page 108
1	it. We've talked around about it but I would
2	like to try to fill in the whole picture. Let
3	me begin with Mr. Ashley.
4	We've talked about how Cal Tech and
5	Dominion Engineering and Southwest Research
6	were key elements of your testing program.
7	Were there any other significant elements of
8	the testing program?
9	MR. ASHLEY: No. Those were the
10	primary elements.
11	MEMBER BROWN: Okay. Could you
12	describe the scope of this testing program;
13	what you are trying to achieve, what it
14	involved, how long it's been going on.
15	MR. ASHLEY: My recollection, and
16	Dr. Shepherd can correct me, I think it's been
17	going on about five years. I think the
18	initial testing that Dr. Shepherd began at Cal
19	Tech was in 2005.
20	Some of the initial investigations
21	were with fairly simple systems in Dr.
22	Shepherd's laboratory looking at two-

	Page 109
1	dimensional systems, not just straight runs of
2	pipe, but bend systems and provided some of
3	the very important foundational work early on
4	in the program.
5	The testing at Southwest Research
6	then advanced that testing to full-scale
7	piping systems of more complex geometry
8	including some demonstration tests for some
9	inline components down at Southwest.
10	The role of Dominion Engineering in
11	the overall program in effect is as the
12	analyst because obviously Dr. Shepherd's work
13	really focused very heavily on some
14	fundamental phenomenology, what happens, how
15	these events transition from deflagrations to
16	detonations and responses.
17	Dominion's role was really
18	establishing how are we going to take this
19	data and this measured response data and
20	develop analytical tools that would allow us
21	to conservatively predict the responses of the
22	piping systems to these postulated HPAV

		Page	110
1	events.		
2	If you think about Dominion,		
3	Dominion worked in taking some of Dr.		
4	Shepherd's data.		
5	A lot of Dr. Shepherd's data worked		
б	taking Southwest Research data, and then		
7	really taking that data and developing		
8	analytical models that would assure that we		
9	could conservatively predict the responses		
10	that we were actually measuring in these		
11	piping systems in the laboratories and at the		
12	larger scale down at Southwest Research.		
13	MEMBER BROWN: So what you're		
14	really looking at is the bounding cases for		
15	this rather than what all the possibilities		
16	are but basically the boundaries of the HPAV		
17	uncertainties?		
18	MR. ASHLEY: Well, yes.		
19	Determination of uncertainty, how we would		
20	address uncertainties, how well the models can		
21	correlate. If the models don't correlate		
22	well, how would we have to address that. All		

the way through to how do we combine the 1 2 stresses. 3 There's a whole lot of technology, a 4 lot of important analytical methods in terms 5 of how stresses actually combine, stresses 6 along different axes in a pipe. How do they 7 combine to result in strains in the pipe? 8 All of that was really part of this 9 program is to be able to get to a criteria that provides us the high confidence that we 10 11 could evaluate the responses of our piping 12 systems to these HPAV events that we then could use for qualification. 13 14 MEMBER BROWN: Dr. Dickey yesterday 15 talked about an unexpected result of, I guess, 16 in your Newtonian vessels the stratification 17 of the heavier particles and how those were 18 dominantly taken out of the tank when you were 19 pumping out. Have you had any similar 20 surprises, if you will, in your HPAV program, 21 things that you didn't expect? 22 If you look down at the MR. ASHLEY:

> Neal R. Gross & Co., Inc. 202-234-4433

Page 111

Page 112 individual responses in a piping system, there 1 2 were some responses that I think -- you know, 3 we worked pretty closely with Dr. Shepherd, scratched our head, some things that we call 4 5 high frequency oscillations. We saw those 6 responses. 7 We tried to understand and make sure 8 we understood what those were. Then we had to 9 make sure that we could understand how we had to evaluate those and how we had to include 10 11 those in the design process. Dr. Shepherd can 12 speak to it. 13 He's probably seen in the lab those 14 responses before but from the engineer 15 standpoint those were responses that I would 16 say we didn't anticipate but they were important to be evaluated and included in the 17 18 overall design criteria. 19 Would you like to MEMBER BROWN: 20 comment on that, Dr. Shepherd? 21 DR. SHEPHERD: Yes. So this is the 22 kind of interesting, fun, academic part of it,

Page 113 although I think it perplexes sometimes the 1 2 engineers how to handle these things. What we were confronted with when we came into this 3 4 program is that the state-of-the-art in 5 evaluating detonations and piping systems was 6 In fact, there was not really any pretty low. 7 agreed upon design methodology for this, a set 8 of standardized loadings which you would use. The engineering groups like Bechtel 9 come about this from the point of view that 10 this is a structural mechanics problem. 11 Τf you'll tell me what the loading looks like, 12 what the pressure is as a function of time 13 14 inside of the pipe they have very highly 15 developed methods to do structural analysis. That's what Dominion is doing and 16 17 what Greq was referring to with their 18 analytical methods so they use these finite analysis tools to calculate the response of 19 20 the piping and see if they can develop loading 21 methods, loading descriptions for the 22 different things that happen, deflagration,

detonation, transition from deflagration to 1 2 detonation. 3 What happen when the detonation goes 4 around the bend in the pipe. What happens 5 when it reflects off of the dead end. What 6 happened when it goes through a T. These were 7 the things that we actually did not have a 8 good grasp on in 2005 when I got started on 9 this program. One of the things that this program 10 has done is really significantly advance the 11 12 state of the art in how to model all of these features and make reliable engineering 13 14 predictions of the response of the pipe. Now, this is a problem which is a little different 15 16 than what piping designers usually confront 17 because the detonation waves move pretty fast. 18 They are moving at several thousand meters per second so they excite elastic waves 19 20 in the piping that ordinarily are not part of 21 piping design. Piping design is basically you 22 have a piece of material and it might undergo

> Neal R. Gross & Co., Inc. 202-234-4433

Page 114

D	1 1	_
Page		5
rage		

	P
1	seismic loading which has oscillations on the
2	order of a few hertz or tens of hertz but you
3	typically don't consider oscillations which
4	could be hundreds of kilohertz which is what
5	gets excited when the detonation wave moves
6	through.
7	It's necessary to expand how you are
8	thinking about this. It's necessary to
9	understand how you are going to account for
10	these things with your standard engineering
11	tools. There's standard piping codes that
12	they're using.
13	One of the things we had to do was
14	develop methods for how do we prescribe what
15	the forces are going to be in the standard
16	piping code ME101 that Bechtel uses for doing
17	their design. This is, as far as I know, the
18	first time that this has really been done for
19	detonations and we've come up with a set of
20	prescriptions of how to do this.
21	We progressed from the point where
22	we were absolutely ignorant about it to now we

	Page
1	can make reasonably reliable predictions. We
2	show that for fairly complex piping systems
3	that incorporated the kinds of features that
4	you have, not all of the features but most of
5	the features; three dimensionality, bends, Ts,
6	so forth, in my laboratory and at Southwest
7	Research, piping systems that were in my
8	lab it was 70 feet long.
9	At Southwest I think it was 200 feet
10	long, and able to show by using this kind of
11	breaking it down into components developing
12	models for each of these individual parts, we
13	can simulate the whole. In the process of
14	doing that, some of these features like these
15	high frequency oscillations, these are things
16	that are kind of unusual creatures.
17	How well are we going to need to
18	understand those to do the design? I think
19	they are things that we don't have to
20	understand particularly well because the other
21	strains and stresses which we can reliably
22	calculate, in fact, bound those things but

	Page 117
1	they remain as something that we don't clearly
2	understand.
3	MEMBER BROWN: Thank you. Mr.
4	Ashley, what are the uncertainties that you
5	are still trying to grapple with and resolve -
6	_
7	MR. ASHLEY: Well, I think
8	MEMBER BROWN: related to the
9	testing program?
10	MR. ASHLEY: Related to the testing
11	program in terms of our ability to correlate
12	our design models with testing, there really
13	are not a substantial number of uncertainties.
14	There were some HPAV Independent Review Team
15	findings that required that we provide
16	additional justification.
17	We had, I think, good discussions
18	with their team, additional justification for
19	how we combine some stresses. The data is
20	available. We don't need additional data for
21	that.
22	The uncertainties that we are still

Page 118 addressing have to do with the questions that were asked with regard to other gases like nitrogen that could cause formation of larger bubbles. What effect does that have on what we call our run-up links as we predict what the event is. I think Dr. Shepherd provided good insights on how to address that. There is data out there that helps support that. We are completing that work. I think as Mr. Kasdorf mentioned in his testimony, the bubble formation and our confidence in our bubble formation models are conservative. There is some uncertainty there that we are addressing in two ways. One of the beauties of the quantitative risk analysis is it allows you to address uncertainties. Also we are addressing those uncertainties specifically relative to the phenomenology because that bubble model is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

part of our quantitative risk analysis.

If you go through the HPAV

	Page 119
1	Independent Review Team model, I think the
2	remaining uncertainties that we need to
3	resolve before we can fully implement that are
4	well documented. Our action plan actually to
5	address those uncertainties is documented in
6	our closure plan for those both on the finding
7	side and the recommendation side.
8	MEMBER BROWN: Thank you, Mr.
9	Ashley.
10	I've got a real void here in the
11	middle of the panel. Most of my questions are
12	really to Dr. Shepherd but I don't want to
13	leave you out.
14	I would ask maybe, Mr. Knutson, how
15	involved are you in this testing program and
16	the direction of the testing program? Do you
17	review the data that they're looking at and
18	are there other questions that you've added or
19	you expect I mean, are you actively
20	involved in the direction of this testing?
21	MR. KNUTSON: I guess, first, thank
22	you for pronouncing my name correctly. Second

Page 120 MEMBER BROWN: We're both MR. KNUTSON: -- the Department of Energy has technical experts that are part of our project team that are engaged with the testing plan. They do participate in

8 understanding how these results are translated 9 into the design. They are part of the review 10 process from an assurance point of view. We do make sure that we do keep the 11 12 arm's length relationship between design 13 authority responsibilities and design 14 assurance responsibilities. Our job is to 15 make sure that the process being followed is in conformance with the standards that we've 16 17 expected and in conformance with the 18 expectations for ultimate public safety. 19 MEMBER BROWN: Thank you. 20 Dr. Shepherd, I've got a bunch of 21 questions here. I could talk to you forever, 22 as you know.

1

2

3

4

5

6

7

Scandinavians.

	Page 121
1	DR. SHEPHERD: Okay. Well, we've
2	got another hour.
3	(Laughter.)
4	MEMBER BROWN: The Chairman isn't
5	going to give me a full hour so let me run
6	through some things here if I can quickly. We
7	read a lot of your stuff. I know it's
8	probably dangerous quoting from somebody's
9	email without their permission, but I have an
10	email last November, November 2009, that I
11	would quote. There are a couple of things you
12	have at the end and I just wonder if you feel
13	the same way at this time.
14	DR. SHEPHERD: What day was that?
15	MEMBER BROWN: November 13, 2009.
16	You said, "The DNFSB [Defense Nuclear
17	Facilities Safety Board] comments span the
18	range from very minor to serious points with
19	some miscommunication thrown in for good
20	measure."
21	DR. SHEPHERD: Oh, boy.
22	MEMBER BROWN: "It is clear that

	Page 122
1	multiple reviewers were involved and some of
2	these comments are superficial while others go
3	to great depth and demonstrate understanding
4	of the issues. However, by focusing on so
5	much detail, I think the big picture may be
6	missed.
7	The DNFSB really needs to give some
8	priority and sense of importance so that the
9	main points can be addressed. From my
10	perspective the big issues are" and you
11	list three. I would be interested in your
12	comments on these three big issues.
13	"separating design and safety analysis.
14	This was the purpose of introducing QRA but
15	the issues are still entangled." Do you have
16	any
17	DR. SHEPHERD: I would like to go a
18	little bit into the background here. This is
19	commenting on a document that had been
20	produced which had a set of questions and
21	comments about the approach at that time.
22	What I felt was oftentimes, and what

	Page 123	3
1	I see, and this is true not only of the	
2	Defense Board but many other regulatory	
3	boards, and it's perhaps just a fact of life,	
4	but the comments span a large spectrum and	
5	it's difficult to often get, I would say, a	
6	response that really helps the organization.	
7	I mean, the goal of all of this is	
8	to help the organization to do its job in a	
9	way that's going to comply with regulations,	
10	going to make sure it's safe and it's being	
11	done in a way and, in this case, safety means	
12	it has to be done in an expedient fashion so	
13	we don't leave the waste sitting in the	
14	ground. That's been made clear.	
15	My comments are really directed at	
16	the fact that when the project organization	
17	spends an inordinate amount of time responding	
18	to each little detail and goes through each	
19	one with almost equal importance, it really	
20	then obscures what the main issues are. That	
21	was really to the point of my comments here.	
22	I felt they were really getting down	

in the weeds and spending a lot of time 1 2 thinking about the details. I'm trying to 3 say, "Okay, guys. We need to step back a 4 little bit and say what's really the major 5 issues here." That's really the thrust of my 6 comments. 7 MEMBER BROWN: Thank you. The 8 second one was using test data and simulations 9 to validate the proposed method of treating stress estimation from explosive loading. 10 11 DR. SHEPHERD: Right. So thinking about these big issues and then just backing 12 13 up a little bit so I can clearly address each 14 one of these separating design and safety 15 analysis. This is a very important point that 16 hasn't really been touched on much here. This 17 may be more of my own opinion as a scientist 18 and an engineer than it reflects how the project is approaching this. 19 20 I would like to point out that in 21 most projects of this type you have a design 22 which is driven by some fundamental

> Neal R. Gross & Co., Inc. 202-234-4433

Page 124

Page 125

requirements of the job that you're trying to
 do and then you have a set of safety analyses
 that you do which are something that exist
 separately to this.

5 This is something that has to be, I 6 think, clearly seen. You use the piping code 7 to do the design for your design basis. You 8 have a lot of safety analyses that you do that 9 consider all kinds of things. I always tells 10 folks when I get involved in these things all 11 things that are possible are not probable.

12 When you mix these things up and you start to say, well, I'm going to do design, 13 14 for example, to resist as a standard case in 15 each piece of pipe, in each component, a 16 pressure reflected deflagration and detonation 17 transition, you've really put yourself in a 18 box that's extremely hard to get out of. I'm 19 not sure if that makes any sense at all. 20 That's what my comment one was about. You 21 should not get these two things confused. 22 Now, number two, using test data in

	P	Page
1	simulations to validate the proposed method of	
2	treating stress estimation from explosive	
3	loading. One of the key things that we have	
4	to keep in mind here is that we have a complex	
5	state of stress in the piping. Piping codes,	
6	they are not like the 10 Commandments. All	
7	right? The piping code is a very big	
8	collection of prescriptions about how to do	
9	things and it gives you many different ways to	
10	do things.	
11	One of the things that they tell you	
12	is you really need to, as a responsible	
13	engineer, figure out how you're going to treat	
14	complex situations where you have stresses in	
15	different directions in this case the	
16	stresses are time dependent and how you are	
17	going to combine those and then specify some	
18	criteria that say whether or not you are going	
19	to accept that level of combined stress. Now,	
20	that's not something that we have any rules	
21	about in the piping code.	
22	One of the things that I think is	

1very important to do and that the project has2recognized and the project has been engaged in3for some time and isn't going to be completing4 they've committed to doing that as part of5responding to the Independent Review Team's6remarks is developing methods and7validating for how you estimate the stresses8and combine those.9MEMBER BROWN: Thank you. I10appreciate the insight. That's what I'm11looking for. I'm always looking out. I like12to hear people looking back so I can validate13what I'm doing. One of the things which I14think you just explained but it's a quote out15of a 2009 Journal of Pressure Vessel16Technology that you wrote is that, "There is17no provision within the ASME boiler and18pressure vessels or piping to withstand20gaseous detonations."21DR. SHEPHERD: That's correct. If22you'll look you'll see that there is a short		Page 127
3 for some time and isn't going to be completing 4 they've committed to doing that as part of 5 responding to the Independent Review Team's 6 remarks is developing methods and 7 validating for how you estimate the stresses 8 and combine those. 9 MEMBER BROWN: Thank you. I 10 appreciate the insight. That's what I'm 11 looking for. I'm always looking out. I like 12 to hear people looking back so I can validate 13 what I'm doing. One of the things which I 14 think you just explained but it's a quote out 15 of a 2009 Journal of Pressure Vessel 16 Technology that you wrote is that, "There is 17 no provision within the ASME boiler and 18 pressure vessels or piping codes for designing 19 pressure vessels or piping to withstand 20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If	1	very important to do and that the project has
 they've committed to doing that as part of responding to the Independent Review Team's remarks is developing methods and validating for how you estimate the stresses and combine those. MEMBER BROWN: Thank you. I appreciate the insight. That's what I'm looking for. I'm always looking out. I like to hear people looking back so I can validate what I'm doing. One of the things which I think you just explained but it's a quote out of a 2009 Journal of Pressure Vessel Technology that you wrote is that, "There is no provision within the ASME boiler and pressure vessels or piping to withstand gaseous detonations." DR. SHEPHERD: That's correct. If 	2	recognized and the project has been engaged in
5 responding to the Independent Review Team's 6 remarks is developing methods and 7 validating for how you estimate the stresses 8 and combine those. 9 MEMBER BROWN: Thank you. I 10 appreciate the insight. That's what I'm 11 looking for. I'm always looking out. I like 12 to hear people looking back so I can validate 13 what I'm doing. One of the things which I 14 think you just explained but it's a quote out 15 of a 2009 Journal of Pressure Vessel 16 Technology that you wrote is that, "There is 17 no provision within the ASME boiler and 18 pressure vessel or piping codes for designing 19 pressure vessels or piping to withstand 20 DR. SHEPHERD: That's correct. If	3	for some time and isn't going to be completing
6 remarks is developing methods and 7 validating for how you estimate the stresses 8 and combine those. 9 MEMBER BROWN: Thank you. I 10 appreciate the insight. That's what I'm 10 looking for. I'm always looking out. I like 12 to hear people looking back so I can validate 13 what I'm doing. One of the things which I 14 think you just explained but it's a quote out 15 of a 2009 Journal of Pressure Vessel 16 Technology that you wrote is that, "There is 17 no provision within the ASME boiler and 18 pressure vessels or piping to withstand 20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If	4	they've committed to doing that as part of
 validating for how you estimate the stresses and combine those. MEMBER BROWN: Thank you. I appreciate the insight. That's what I'm looking for. I'm always looking out. I like to hear people looking back so I can validate what I'm doing. One of the things which I think you just explained but it's a quote out of a 2009 Journal of Pressure Vessel Technology that you wrote is that, "There is no provision within the ASME boiler and pressure vessel or piping codes for designing pressure vessels or piping to withstand gaseous detonations." DR. SHEPHERD: That's correct. If 	5	responding to the Independent Review Team's
 and combine those. MEMBER BROWN: Thank you. I appreciate the insight. That's what I'm looking for. I'm always looking out. I like to hear people looking back so I can validate what I'm doing. One of the things which I think you just explained but it's a quote out of a 2009 Journal of Pressure Vessel Technology that you wrote is that, "There is no provision within the ASME boiler and pressure vessel or piping codes for designing pressure vessels or piping to withstand gaseous detonations." DR. SHEPHERD: That's correct. If 	6	remarks is developing methods and
9MEMBER BROWN: Thank you. I10appreciate the insight. That's what I'm11looking for. I'm always looking out. I like12to hear people looking back so I can validate13what I'm doing. One of the things which I14think you just explained but it's a quote out15of a 2009 Journal of Pressure Vessel16Technology that you wrote is that, "There is17no provision within the ASME boiler and18pressure vessel or piping codes for designing19pressure vessels or piping to withstand20gaseous detonations."21DR. SHEPHERD: That's correct. If	7	validating for how you estimate the stresses
10appreciate the insight. That's what I'm11looking for. I'm always looking out. I like12to hear people looking back so I can validate13what I'm doing. One of the things which I14think you just explained but it's a quote out15of a 2009 Journal of Pressure Vessel16Technology that you wrote is that, "There is17no provision within the ASME boiler and18pressure vessel or piping codes for designing19pressure vessels or piping to withstand20gaseous detonations."21DR. SHEPHERD: That's correct. If	8	and combine those.
 looking for. I'm always looking out. I like to hear people looking back so I can validate what I'm doing. One of the things which I think you just explained but it's a quote out of a 2009 Journal of Pressure Vessel Technology that you wrote is that, "There is no provision within the ASME boiler and pressure vessel or piping codes for designing pressure vessels or piping to withstand gaseous detonations." DR. SHEPHERD: That's correct. If 	9	MEMBER BROWN: Thank you. I
 to hear people looking back so I can validate what I'm doing. One of the things which I think you just explained but it's a quote out of a 2009 Journal of Pressure Vessel Technology that you wrote is that, "There is no provision within the ASME boiler and pressure vessel or piping codes for designing pressure vessels or piping to withstand gaseous detonations." DR. SHEPHERD: That's correct. If 	10	appreciate the insight. That's what I'm
 13 what I'm doing. One of the things which I 14 think you just explained but it's a quote out 15 of a 2009 Journal of Pressure Vessel 16 Technology that you wrote is that, "There is 17 no provision within the ASME boiler and 18 pressure vessel or piping codes for designing 19 pressure vessels or piping to withstand 20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If 	11	looking for. I'm always looking out. I like
 14 think you just explained but it's a quote out 15 of a 2009 Journal of Pressure Vessel 16 Technology that you wrote is that, "There is 17 no provision within the ASME boiler and 18 pressure vessel or piping codes for designing 19 pressure vessels or piping to withstand 20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If 	12	to hear people looking back so I can validate
 of a 2009 Journal of Pressure Vessel Technology that you wrote is that, "There is no provision within the ASME boiler and pressure vessel or piping codes for designing pressure vessels or piping to withstand gaseous detonations." DR. SHEPHERD: That's correct. If 	13	what I'm doing. One of the things which I
 16 Technology that you wrote is that, "There is 17 no provision within the ASME boiler and 18 pressure vessel or piping codes for designing 19 pressure vessels or piping to withstand 20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If 	14	think you just explained but it's a quote out
17 no provision within the ASME boiler and 18 pressure vessel or piping codes for designing 19 pressure vessels or piping to withstand 20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If	15	of a 2009 Journal of Pressure Vessel
18 pressure vessel or piping codes for designing 19 pressure vessels or piping to withstand 20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If	16	Technology that you wrote is that, "There is
<pre>19 pressure vessels or piping to withstand 20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If</pre>	17	no provision within the ASME boiler and
<pre>20 gaseous detonations." 21 DR. SHEPHERD: That's correct. If</pre>	18	pressure vessel or piping codes for designing
21 DR. SHEPHERD: That's correct. If	19	pressure vessels or piping to withstand
	20	gaseous detonations."
22 you'll look you'll see that there is a short	21	DR. SHEPHERD: That's correct. If
	22	you'll look you'll see that there is a short

	Page 128
1	section with some recommendations about
2	deflagrations. We now have a code case that
3	is sort of a supplement to the code which
4	describes how you handle having solid
5	explosives inside of a containment vessel.
6	This is something that, in fact, was done for
7	the DOE for their testing facilities that they
8	have at the national laboratories.
9	There is not any specific
10	prescription about what you do when you have
11	a detonation inside of a pipe or a vessel and
12	so you have to rely on that part of the code
13	that says that you need to get smart,
14	qualified engineers and they need to use
15	accepted methods and analyze that and come up
16	with methods for then determining what the
17	stresses and strains are.
18	That's really what we've been about
19	here. I wrote that article a little while ago
20	and if I'm going to write an update in that,
21	I would include all of this new information we
22	have. In fact, we're working with the ASME

	Page 129
1	both the boiler and pressure vessel part and
2	the piping part, to initiate a process, and
3	it's quite a lengthy process with the ASME.
4	It's a pretty bureaucratic
5	organization. Their engineers are very
6	deliberate and conservative in developing
7	a set of rules that would then allow for
8	basically translating everything that we've
9	learned here in this program plus additional
10	knowledge and then we would have a
11	prescription where people could go and look it
12	up and say, "Okay, what do I do now? I've got
13	a detonation. How should I estimate the
14	stresses and the strains?"
15	MEMBER BROWN: How long does it
16	typically take to get a code case through?
17	DR. SHEPHERD: The code case that
18	I'm familiar with is the one that was done
19	from impulsively loaded vessels and I think
20	that took about seven years.
21	MEMBER BROWN: So it's not
22	something done lightly.

Page 130

	P
1	DR. SHEPHERD: No.
2	MEMBER BROWN: Mr. Kasdorf talked
3	briefly about Hamaoka and Brunsbuttel and the
4	explosions that happened in those nuclear
5	plants. The information I have says that the
6	ductal pipe failures were estimated at
7	somewhere between 123 and 127 percent of their
8	normal dimensions but that was a different
9	type of material.
10	DR. SHEPHERD: There were two
11	different types of materials actually. I
12	think a couple really key differences between
13	those situations and the present one. In
14	Hamaoka it was carbon steel and high-strength
15	material and in Brunsbuttel it was stainless
16	steel. The stainless is more similar to what
17	we have here.
18	The other key thing is those systems
19	were operating at very high pressures to start
20	with and so if you look at the relative
21	loading, that is the pressure that was
22	produced, they believe, by the explosion

		Page	131
1	compared to the onset of plastic deformation,		
2	those pressures were quite high in comparison		
3	to the pressures that we're considering even		
4	in the most extreme cases that we have, the		
5	so-called pressure reflected detonation cases.		
6	Those would still be much lower.		
7	If, you fact, you look at the relative amounts		
8	of deformation, they would be much, much		
9	smaller here in the case of the WTP. I fact,		
10	they are so small you would never even		
11	consider fragmentation to be an issue in the		
12	WTP in comparison to that.		
13	MEMBER BROWN: I think I've read		
14	that deflagrations you can expect possibly a		
15	ten-fold increase in the pressure and a		
16	detonation is 30-fold, something like that.		
17	DR. SHEPHERD: It's good to think		
18	about it in very definite terms. For the		
19	hydrogen nitrous oxide system and we've been		
20	using a system with about 30 percent hydrogen		
21	as sort of the reference case. The pressure		
22	increase that you get for a detonation would		

	Page 132
1	be about 26 times and the pressure increase
2	for a deflagration might be on the order of 10
3	to 12 times.
4	MEMBER BROWN: It's 12 times the
5	original pressure?
6	DR. SHEPHERD: The original
7	pressure.
8	MEMBER BROWN: going back to the
9	nuclear power plants where they are operating
10	at 1,600 PSI multiplied by 26 and you get a
11	pretty significant
12	DR. SHEPHERD: Exactly. Of course,
13	in that case that was a hazard people have
14	known about as long as we've been designing
15	nuclear power plants and they simply didn't
16	take care of the fact that they should have
17	had a high-point vent there and they could
18	have avoided that problem. That was the case
19	where standard mitigating method could have
20	been used to avoid that.
21	MEMBER BROWN: Thank you.
22	Mr. Ashley, we talked about what it
	- · · · · · · · · · · · · · · · · · · ·

		Page
1	takes to get hydrogen deflagration or	
2	detonation. You need the hydrogen, you need	
3	the oxidizer, and you need the initiator.	
4	What do you use as the probability of	
5	initiation for hydrogen?	
б	MR. ASHLEY: The probability of	
7	ignition we use is 1. What we assume is if	
8	the conditions exist, and this is through the	
9	QRA, through the use of the QRA if the	
10	conditions exist that could result in a	
11	deflagration or detonation, we assume that the	
12	ignition source is there.	
13	MEMBER BROWN: Does that mean as	
14	soon as you get to a detonable quantity or you	
15	get the maximum detonable quantity and then	
16	you	
17	MR. ASHLEY: Based on the event	
18	under consideration we do not do like we did	
19	in the ice condensers where we have hydrogen	
20	igniters to make sure that we ignite before we	
21	get there. We assume that the bubble	
22	continues to accumulate so that we can be	

		Page 1	34
1	evaluating the condition that would provide		-
2	the high severity of that specific event.		
3	MEMBER BROWN: The HIRT team		
4	questioned whether this was necessary. Is		
5	that correct?		
6	MR. ASHLEY: Well, this is a topic		
7	of a lot of discussion. Could there be		
8	through an expert elicitation process, poll a		
9	bunch of experts together that could provide		
10	a different rather than a probability of		
11	one could we develop some other probability		
12	distribution for ignition evaluating the		
13	specific sources of ignition?		
14	I think as Dr. Shepherd said the		
15	condition in Brunsbuttel and in Japan were		
16	very high pressure, high temperature.		
17	Obviously we don't have that condition but		
18	there was a recommendation that we might		
19	evaluate something other than a probability of		
20	ignition of one.		
21	In terms of looking at specific		
22	additional margin in our response to that		

		Page 1
1	recommendation as we are considering an expert	
2	elicitation but right now that is not a	
3	priority for us. Our priority will be using	
4	the design tool which assumes a probability of	
5	ignition of one.	
6	MEMBER BROWN: Thank you.	
7	MR. RUSSO: Just for comparison, if	
8	I may, our facility will run at about a	
9	maximum of 140 F temperature, 70 to 80 psi.	
10	The reactor, as you know, goes at about 500 to	
11	600 F, 1200 to 1600 psi. I just wanted to	
12	provide that for context and the discussion.	
13	MEMBER BROWN: Thank you, Mr.	
14	Russo.	
15	The probability of ignition, Dr.	
16	Shepherd, is that a reasonable assumption that	
17	BNI is making? What was your opinion of the	
18	HIRT recommendations on that subject?	
19	DR. SHEPHERD: My opinion is that we	
20	should reconsider the probability of ignition.	
21	If you look at what drives the QRA which, by	
22	the way, I believe is a very important tool	

Page 136

for understanding what you need to be 1 2 addressing in your safety analysis. The probability of ignition in my 3 4 laboratory is zero except when I push the 5 If you have a piece of pipe that has button. no active components in it, catalytic 6 7 materials, nothing is moving, it's just 8 sitting there, to me it's not credible to be 9 postulating that you have ignition taking 10 place. 11 When you say that the ignition 12 probability is one, you're doing something that is more than just conservative. 13 You're 14 basically throwing up your hands and saying, 15 "I'm not going to try to seriously address this issue." 16 I think it's useful to look at what 17 18 other organizations have done. I have 19 encouraged the project all along to have a 20 look at what the practices are in various 21 other industries which have hazards. For

example, inside of aircraft fuel tanks looking

22

Page 137 at what's been done at Sellafield. 1 2 We are now engaged in talking to 3 Sellafield about their practices that they 4 have there. They have, in fact, sponsored a 5 great deal of work on ignition by impact and 6 things of that nature. I think that whatever 7 you can do in regard to understanding better 8 and quantifying what the ignition sources are. 9 For example, I've never heard a substantive discussion about what actually the 10 ignition sources would be other than just sort 11 of a very rough evaluation that, "Oh, well, we 12 13 might have some components that might generate 14 some kind of electrical spark or else there 15 might be some compressive ignition due to motion of material." 16 Outside of that I don't believe 17 18 there has been any substantive evaluation of 19 that and I think there are substantial gains 20 that can be made. 21 CHAIRMAN WINOKUR: Okay. We are 22 going to take a question from Dr. Mansfield

		Page 138
1	and maybe one from Mr. Bader and we'll take a	
2	very brief break. We need to do that. Then	
3	we'll get back to Mr. Brown.	
4	Outside of that I don't believe	
5	there has been any substantive evaluation of	
6	that and I think there are substantial gains	
7	that can be made.	
8	CHAIRMAN WINOKUR: Okay. We are	
9	going to take a question from Dr. Mansfield	
10	and maybe one from Mr. Bader and we'll take a	
11	very brief break. We need to do that. Then	
12	we'll get back to Mr. Brown.	
13	MEMBER MANSFIELD: Just a short	
14	intervention, Professor Shepherd. The gas	
15	company has pipes under a fraction of an inch	
16	of water pressure four feet underground, wet,	
17	no sparks, no nothing. And yet, they always	
18	assume a PLI of one. That's why they dig.	
19	The same is true of the space shuttle main	
20	engine testing facility.	
21	Any leak of hydrogen at the West	
22	Palm Beach test facility is considered to have	

	Page 139
1	a PLI of one. Even though it's miles away
2	from not miles but a long way from anything
3	you and I would call emission facility. I
4	really don't think it's a good idea to
5	introduce PLIs of less than one in a facility
6	that you can't even see.
7	DR. SHEPHERD: I think what you have
8	to do is to look at the practices in a lot of
9	industries. For example, industries that
10	handle high-hazard flammable materials,
11	flammable dust, flammable gases, liquids, and
12	so on, there are standard electrical practices
13	for minimizing the sources of invert ignition
14	by any kind of accidental electrical
15	discharge.
16	There's an entire industry that is
17	devoted to this. There is an ATEC standard in
18	Europe. There are EL standards here in the
19	United States. As so one can make substantial
20	efforts to ensure that there are no ignition
21	sources present for a number of these types of
22	ignition sources.

Page 140 Some are things that you can always 1 2 postulate and we are going to have difficulty 3 ever ruling out, for example, catalytic materials inside of the piping systems, 4 5 adiabatic surges. 6 I believe it behooves the project if 7 we are going to turn over every rock and 8 understand what are indeed the threats. Then we need to understand what is the realistic 9 10 probability of ignition and that's something 11 that I think ought to be included in the QRA. 12 CHAIRMAN WINOKUR: Mr. Bader. 13 Mr. Ashley, all this MEMBER BADER: 14 discussion with Dr. Shepherd and yourself just continues to drive me in the direction of 15 16 asking you a similar question to what I asked 17 Dr. Shepherd. When you look at all these uncertainties, and I can reenumerate them but 18 you've heard them before, and you've added a 19 20 few more, doesn't this drive you in the 21 direction of needing additional prudent levels 22 of conservatism?

	Dago 141
1	Page 141 MR. ASHLEY: We believe that we do
2	have prudent levels of conservatism.
3	- Certainly it's good to step back from this and
4	understand really the two sides to the
5	equation, the demand side and the capacity
6	side.
7	The demand side is really governed
8	by what we're doing through the quantitative
9	risk analysis. What is the accumulation of
10	hydrogen, what is the geometry of that
11	accumulation of hydrogen, and what the
12	resulting potential events could be. Even
13	embedded in that methodology is conservatism.
14	The capacity side is very
15	deterministic and conservative. If you look
16	at the methodologies employed in combinations
17	of stresses, look at the methodologies
18	employed in the analysis to predict responses,
19	and then look at the methodologies that are
20	employed in determination of the material
21	properties and the levels of stresses that are
22	allowed. That is very deterministic and

Page 142

conservative.

1

2	We believe that though there are
3	those uncertainties, and we acknowledge those
4	uncertainties, and through the QRA we actually
5	can evaluate the sensitivity to those
6	uncertainties, we believe that what we have is
7	what we termed in commercial nuclear high
8	confidence, low probability of failure which
9	is assuring that we maintain, even in these
10	unlikely events, probability of ignition of
11	one and even under these unlikely events we
12	maintain the pressure boundary of the piping.
13	MEMBER BADER: Let me go to one
14	other thing and I appreciated this comment
15	that Dr. Shepherd made. He talked about
16	getting lost in the weeds looking at all the
17	small details. Wouldn't adding back even more
18	conservatism allow you to get much less
19	complex situation in determining the risk from
20	hydrogen detonations
21	MR. ASHLEY: Actually
22	MEMBER BADER: which is going

back to where we were before. 1 2 MR. ASHLEY: Well, I think it's 3 important when you talk about where we were before in the approval of the criteria in 4 5 2006. 6 There were basic assumptions that, 7 in fact, we provided significantly more rigor 8 that we believe is important in looking at 9 potential, the possibility of multiple events and what affect those multiple events have on 10 11 the systems in looking at components of stress 12 that originally prior to doing all of the investigation testing and analysis that we may 13 not have considered. 14 15 You can look at it and say there is 16 a lot of complexity in the journey, a lot of 17 moving parts. The intent is we have criteria 18 now that is easily understood. It's not 19 implemented by everyone. These are 20 specialists that are implementing this 21 criteria all the way from the organizations 22 and the personnel that provide input to the

Page 144 QRA; engineering, operations, and safety. 1 2 Even the analysts, back from the commercial nuclear days, you didn't give 3 4 transient analysis of piping systems to any 5 engineer. You didn't give class 1 analysis of piping systems to any engineer. Those were 6 7 specialists. This criteria will be 8 implemented by specialists. It's important. 9 MEMBER BADER: The last question before we break to Ms. Busche. 10 Staving on 11 this course to me means that there will have to be assumptions that are fairly complex, 12 13 protected in the safety basis. 14 MS. BUSCHE: Correct. 3009 Appendix 15 A would drive us there when I analyze this 16 design tool like any other design tool. 17 MEMBER BADER: And that's going to 18 be a more complex situation in the operation? 19 MS. BUSCHE: I don't think I can 20 determine that yet but we will have to 21 maintain it and establish programs that are 22 different than what we would traditionally

Page 145 have today. 1 2 MEMBER BADER: If you see an 3 occurrence in the plant during operation, 4 wouldn't you have to then go back and 5 challenge? 6 MS. BUSCHE: Yes. 7 MEMBER BADER: Thank you. 8 MR. ASHLEY: Mr. Bader, I do need to 9 add to that. If you look at all of the 10 parameters that are necessary or that are important in the PRA [Probabilistic Risk 11 12 Analysis], many of these parameters are 13 already protected. Maximum temperatures of 14 systems, the hydrogen generation rates. Those 15 are protected already. 16 If you look at many of the 17 assumptions in the probability distributions 18 those are protected by existing safety 19 management programs. There are safety 20 management programs that will be necessary for 21 the plant. 22 We will need to review, and nuclear

Page 146 safety will need to review, are there any 1 2 additional assumptions that require protection. I think the thought that the QRA 3 4 is creating a whole new set of protected 5 assumptions, that's not true. That's not 6 factual because a lot of the inputs are 7 already protected design basis assumptions. 8 CHAIRMAN WINOKUR: All right. Ι 9 think we're going to need to take a short 10 break right now. It's only going to be two or three minutes and then we will pick up. Okay? 11 12 (Whereupon, at 10:26 a.m. the aboveentitled matter went off the record and 13 14 resumed at 10:30 a.m.) 15 CHAIRMAN WINOKUR: All right, we're 16 going to reconvene. Please, I would like quiet in the room. 17 18 Mr. Brown, you can continue your 19 questioning. 20 MEMBER BROWN: Thank you, Mr. 21 Chairman. 22 Dr. Shepherd, can you --Let's see.

		Page
1	we had hoped Dr. Mattson could be here but he	
2	was unable to be here for significant personal	
3	reasons so I guess I have you to talk to about	
4	the HIRT team. Can you describe what your	
5	role was with the HIRT team or as an adjunct	
6	to the HIRT team?	
7	DR. SHEPHERD: I wasn't a member of	
8	the team. I briefed them on my activities.	
9	They came to Cal Tech and I gave them	
10	presentations on our work. We had two test	
11	programs that were sponsored by the DOE in	
12	2008, 2009, and 2010 so I talked about that	
13	work.	
14	I gave them the results of that	
15	work, access to the web pages where the data	
16	is, access to the reports. Then I also	
17	engaged in discussions primarily with two of	
18	the review team members that were looking at	
19	gas phenomenology, that was Chickarelli and	
20	Lee.	
21	I also engaged in some discussions	
22	with the group that was looking at structural	

1	Page 148
1	response. I reviewed portions of the documents
2	and provide comments to them. That was the
3	extent of my involvement.
4	MEMBER BROWN: So you were brought
5	in as an adviser. You haven't really been
6	following the implementation of their findings
7	or
8	DR. SHEPHERD: Right. I should add
9	to that no, I was involved in the discussion
10	of the plan that was put together by the
11	project to respond to the findings and so I
12	have made comments on several of the areas and
13	there were several of those areas where I felt
14	that there should be responses that folded in
15	some of my concerns that I have brought up in
16	reviewing some of the other documentation. My
17	comments have been noted and incorporated into
18	that response plan.
19	CHAIRMAN WINOKUR: Okay, Mr. Brown.
20	I hope we have one or two more and we might
21	need to move on, please.
22	MEMBER BROWN: Okay. Just two more

questions.

1

2	CHAIRMAN WINOKUR: Great.
3	MEMBER BROWN: Maybe three. The
4	HIRT team had recommended that BNI establish
5	plastic collapse design margins by testing
б	representative piping and components to
7	failure or by analytical calculations. Do you
8	have any comments on that recommendation?
9	DR. SHEPHERD: I think it's nuts.
10	MEMBER BROWN: Excuse me?
11	DR. SHEPHERD: I don't think it's
12	rational to propose doing that. It doesn't
13	make any sense. I mean, the kinds of loads
14	that we're talking about to get to plastic
15	collapse are so extraordinary and outside of
16	anything that we would imagine that we have
17	either tested or postulated that I don't know
18	what value that would add to the program.
19	MEMBER BROWN: Thank you. The
20	question for you, and then Mr. Ashley,
21	basically the same question. What further
22	tests or analysis do you consider important to

	Page 150
1	the subject of hydrogen explosions in piping?
2	DR. SHEPHERD: Let's be clear.
3	We're talking about HPAV here.
4	MEMBER BROWN: HPAV.
5	DR. SHEPHERD: Yes. I think one of
6	the most important things we can do at this
7	point is to complete the work that Bechtel has
8	said that they are going to do, the project is
9	going to do in regard to fleshing out the
10	design rules and going through an example of
11	that and making sure we have a very clear
12	statement about how the stresses are going to
13	be combined and have an end-to-end calculation
14	for a model system that clearly explains to
15	the designers about how to apply what has
16	evolved into a fairly complex set of design
17	rules that they will need to use to evaluate
18	situations where you have detonations in
19	piping.
20	I think that is the most important
21	thing to do at this point is to make sure
22	that's really very clearly all set out and

	Page 151
1	worked through. In fact, this is a concern
2	that I believe they have committed to
3	responding to and I think that is the most
4	important thing.
5	MEMBER BROWN: Thank you, Dr.
б	Shepherd.
7	Mr. Ashley, would you care to
8	comment on that?
9	MR. ASHLEY: The remaining testing
10	that we must do is for component
11	qualification. We're in the process of
12	developing the test plans and acceptance
13	criteria for qualification testing of
14	components. Once again, though, that's very
15	different than the testing that has been done
16	over the past five years. This is, I would
17	say, a different qualification for a different
18	load, a different event, but it is similar to
19	seismic qualification of components or
20	environmental qualifications.
21	As we purchase a piece of equipment
22	the requirement for testing whatever the
	Nool D. Grogg & Co. Ing

Page 152 safety function is for that component will be 1 2 part of that procurement. 3 MEMBER BROWN: Thank you, Mr. 4 Ashley. 5 Mr. Chairman, those are all my 6 questions. 7 CHAIRMAN WINOKUR: Thank you, Mr. 8 Brown. 9 Dr. Mansfield. MEMBER MANSFIELD: First, I would 10 11 like to go back to the last question that Ms. 12 Roberson asked about who measures what, 13 hydrogen, nitrogen, and where. It was unclear 14 because, Mr. Ashley, you said we. I'm sure that was the corporate institutional we. 15 What 16 I want to ask about is when you have to know 17 the hydrogen generation rate and the N2O 18 generation rate -- the N2 generation rate in 19 pipe, who collects that data, from what sample 20 and where? 21 MR. ASHLEY: Okay. There will be a 22 collection of that data. It is a requirement

	E	Page
1	of the waste acceptance criteria so before a	
2	feed is set, it's sent to the WTP. That	
3	certification parameter will be collected.	
4	MEMBER MANSFIELD: By the operators	
5	of the waste treatment plant?	
6	MR. ASHLEY: I'm not it is in the	
7	waste acceptance criteria. In terms of	
8	specifically which organization, obviously at	
9	the time we're operating the operator will	
10	have to receive that certification of that	
11	sample before that feed is transmitted to the	
12	WTP. The tank farm.	
13	MEMBER MANSFIELD: The tank farm.	
14	Okay. Is the hydrogen generation rate	
15	measured or is it a mass-weighted calculation	
16	based on the Hu result from a bunch of	
17	different batches that have been blended	
18	together.	
19	MR. ASHLEY: It's measured.	
20	MEMBER MANSFIELD: Measured. The	
21	same is true with the N2 and N2O?	
22	MR. ASHLEY: There are a set of	

	Page 154
1	gases and I don't have the ICD in front of me.
2	There are a set of gases, hazardous gases that
3	will have to be measured.
4	MEMBER MANSFIELD: Are those done
5	in your laboratory facility at the WTP plant
6	or a new facility or where?
7	MR. ASHLEY: I would have to defer
8	that to
9	MR. SAIN: 222S.
10	MEMBER MANSFIELD: Oh, 222S. Okay.
11	Fine. Good.
12	The next few questions I have are
13	based on DOE's answers to the Board's written
14	questions from some time ago most of which are
15	for you, Mr. Ashley, but there is a sprinkling
16	for others. You have certainly heard from the
17	Chairman that the operability of the plant is
18	a safety issue. If you break the plant,
19	safety suffers.
20	MR. ASHLEY: Yes.
21	MEMBER MANSFIELD: So, you are
22	going to have to forgive us if we ask

		Pag
1	questions and expect you to have controls like	
2	on hydrogen of the most conservative type	
3	because of the fact of what might be a simple	
4	industrial problem is liable to be months or	
5	more of exposure to the tank waste. We are	
6	not letting up on that.	
7	Mr. Knutson, when ORP [Office of	
8	River Protection] approved BNI's request to	
9	modify the design strategy for control of	
10	hydrogen in pipes you established multiple	
11	criteria for the magnitude of plastic strain,	
12	number of strain events, and things like that,	
13	to protect the primary boundary.	
14	It's getting very complex and it's	
15	getting more so. You need now to watch over	
16	30 parameters to make sure you have accurate	
17	values or accurate distributions for them as	
18	opposed to five parameters last year. Is this	
19	getting too complex for the owner of the plant	
20	to manage?	
21	MR. KNUTSON: The assessment report	
22	that I mentioned in my opening remarks	

Neal R. Gross & Co., Inc. 202-234-4433

Page 155

		Page 15	56
1	evaluated one of the areas which was how have		
2	we established expectations for safe		
3	performance and the ability to manage our		
4	ability, the Department of Energy's ability,		
5	to manage the evolution of responsibilities as		
6	we move forward.		
7	The complexity of the controls and		
8	the assessments associated with those controls		
9	inside the Department of Energy has not		
10	increased. The assessment processes that are		
11	used to ensure that those controls are		
12	monitored and evaluated has not become more		
13	complex.		
14	The relationship between WTP as a		
15	project and the Office of River Protection as		
16	a site office and authorization basis has got		
17	to continue to mature so that as this evolves		
18	we can continue to keep a pace with the		
19	evolution of the project.		
20	All of that is an expected outcome		
21	of a project of this scale, a project of this		
22	size, moving from a design and construction		

	Page 157
1	activity to a commissioning and operations
2	activity. Now, that is a standard and normal
3	expectation associated with any major project
4	evolving towards commissioning, especially one
5	that's a non-reactor nuclear facility in the
6	Department of Energy.
7	MEMBER MANSFIELD: But this
8	complexity is going to continue into operation
9	of the plant. You're going to have to
10	continually review, it seems to me, the
11	contractor's performance on protecting the
12	safety base of many more variables than you're
13	used to.
14	MR. KNUTSON: The normal practice,
15	normal process of our mission-driven site
16	office and Department of Energy activity is
17	exactly that. We must stay a pace with the
18	way the plant is evolving and we must remain
19	cognizant of the way the safety basis is being
20	implemented.
21	MEMBER MANSFIELD: I would have
22	asked this question of Dr. Mattson, and I will

	Page 158
1	eventually, but I'll ask it of you now in his
2	absence. The output of a route-by-route
3	calculation, QRA calculation, as I understand
4	it in the ideal situation, probability density
5	function for the strain in a pipe that can be
б	compared with the ultimate strain to tell you
7	whether you are close to failure or not.
8	Correct?
9	MR. ASHLEY: I think as I said
10	before, Dr. Mansfield, the QRA provides the
11	demand side of the equation, not looking at
12	the capacity side of the equation.
13	MEMBER MANSFIELD: You
14	misunderstand me. If you want, you have a QRA
15	for the demand side required to cause a
16	certain strain that you have decided is either
17	code limit or a limit established by the
18	consensus of people looking at plastic
19	deformation. I mean, there is a probability
20	density function for something in this
21	problem. That's the only thing I can see
22	comes out of the QRA.

	Page 159
1	MR. ASHLEY: What comes out of the
2	QRA really is the severity of the event and
3	the frequency of the event. Then what we have
4	
5	MEMBER MANSFIELD: That's a
6	probability density function.
7	MR. ASHLEY: That's correct. Then
8	what we have to do with that is take those
9	peak pressures, the severity of the event, and
10	the number of times that event could occur and
11	we evaluate that through the response
12	predictions, the piping response predictions
13	to compare that against our acceptable
14	strains.
15	MEMBER MANSFIELD: Okay. You are
16	trying to do this without, of course, code
17	guidance along the lines that we mentioned
18	just a few minutes ago. It seems to me that
19	requires a burden of independent review on
20	parameters and methods and probability density
21	functions, gas pocket logic and things like
22	that, that would normally not be the case.

Г

	Page 160
1	There is no cookbook here. Somebody
2	has got to look at your assumptions or
3	calculations or determinations of what the
4	probability density functions of various
5	parameters in the expressions used through the
6	gas pocket logic to the EPC [Engineering,
7	Procurement and Construction], etc.
8	Unknown parameters that are not
9	allutory parameters do you agree they are
10	best treated as random variables as NUREG-1855
11	[Nuclear Regulatory Commission Regulation]
12	recommends? There being no guidance from DOE
13	on whether or not you should do this, do you
14	believe that you have to that it's
15	necessary to treat unknown variables as random
16	variables for the purpose of doing these
17	calculations?
18	MR. ASHLEY: Actually in one of the
19	recommendations that came out of the HPAV
20	Independent Review Team as we looked at the
21	inputs to the PRA is that many of the inputs,
22	as you remember, Dr. Mansfield, were point

Page 161

values.

1

2	I think when you were here in a
3	smaller briefing I believe in March and we
4	provided you a table of what the basis for the
5	input values, one of the recommendations that
6	came out of the Independent Review Team is
7	obviously looking at those point values and
8	many of those should be input as probability
9	distribution functions. Right now we have 73
10	existing parameters and 35 of those are being
11	converted to probability density functions.
12	As you mentioned, one important part
13	of implementation of a PRA or a QRA is peer
14	review. And as we've responded to the HPAV
15	Independent Review Team findings are when the
16	QRA when we have addressed the findings and
17	those recommendations that we will address, we
18	will submit the QRA to independent peer
19	review, a peer review team of three.
20	One of the peer reviewers that
21	actually DOE when DOE did their peer review
22	out of Brookhaven one of those reviewers will

	Page 162
1	be there. One of the members that was the PRA
2	expert that was on the HPAV Independent Review
3	Team and then there will be a third expert
4	that will be called
5	MEMBER MANSFIELD: By route?
6	MR. ASHLEY: that will be called
7	in to review the PRA methodology.
8	MEMBER MANSFIELD: Methodology.
9	MR. ASHLEY: We will not have
10	actually run the PRA until we get through the
11	completion of the implementation of the
12	findings, a resolution of the findings,
13	complete the V&V [Verified and Validated] of
14	the tool in accordance with the NQA1
15	requirements [Nuclear Quality Assurance] and
16	the 414-1C requirements. It will then be
17	ready for implementation, i.e., route by route
18	taking the methodology and applying that
19	methodology to the specific routes.
20	MEMBER MANSFIELD: And that would
21	be the case for all situations where
22	parameters can't be determined precisely and

	Page 163
1	there is a good argument that they should be
2	distributed.
3	MR. ASHLEY: That's correct. All of
4	those probability distributions will be
5	documented in terms of what is the basis of
б	the selection of that probability
7	distribution.
8	MEMBER MANSFIELD: And that's a
9	promise?
10	MR. ASHLEY: That's correct.
11	MEMBER MANSFIELD: Ms. Busche,
12	you're the only nuclear safety expert
13	testifying today and you're a good one or
14	otherwise we wouldn't have asked you here.
15	Are these QRA results far enough along where
16	you can conceive of how they can be used and
17	protected in the safety basis for the plant?
18	MS. BUSCHE: I am comfortable with
19	the construct of the tool, how it's been put
20	together with the caveat of the changes that
21	are being made. There are two primary input
22	tables that I would initially focus on or we

		Page	164
1	would initially focus on in our integrated		
2	safety reviews and those would be your basic		
3	event parameter tables and your event duration		
4	parameter tables.		
5	We would need to make sure if you're		
6	using a frequency distribution or probability		
7	density, whatever terminology you are going to		
8	use, that we are consistent in the unmitigated		
9	accident analysis and what this tool would		
10	provide. Then we would make some		
11	determination on those inputs and assumptions		
12	and determine if they needed to be protected		
13	by TSRs [Technical Safety Requirement].		
14	Many, as mentioned before, are being		
15	that parameter will have already been		
16	selected because of another potential upset in		
17	the plant. To understand the inputs and		
18	tanks, it's not mature enough along that I can		
19	make those determinations.		
20	MEMBER MANSFIELD: In a nuclear		
21	power plant or in other chemical plants		
22	initiating events like that that can't be		

Γ

1		
		Pag
1	controlled, for instance, loss of offsite	
2	power and duration of offsite power, are	
3	mitigated by having enough electric power to	
4	protect the plant.	
5	I raised questions yesterday about	
6	whether that is the case and whether it's	
7	wise. I just raised them again. I've never	
8	seen a plant this important and this expensive	
9	that wouldn't have was at the whim of	
10	nature and the utility company to protect it	
11	from further damage. Would you care to	
12	comment on that?	
13	MR. ASHLEY: Yes. Obviously all of	
14	those would meet the requirements important to	
15	safety equipment that must be maintained from	
16	a nuclear standpoint in the loss of offsite	
17	power. Additional loads on a diesel are	
18	obviously evaluated as a risk decision.	
19	That risk, as we've talked about,	
20	one of the important features of that is if we	
21	did not have those components available what	
22	would be the potential impact on the operation	

Page 165

		Page
1	of the plant. I think you recognize that	
2	those components that are not important to	
3	safety you can't put everything on your	
4	emergency diesels.	
5	In commercial nuclear days one of	
6	the last things we did is what are the	
7	essential loads because we have too many loads	
8	on our diesels. You can't have lighting on	
9	your diesels. You can't have some of the	
10	components because you are limited in terms of	
11	diesel loads.	
12	One of the beauties of the QRA,	
13	though, is allowing us to make those types of	
14	decisions, providing that information that	
15	really allows us to evaluate the risk and make	
16	those decisions. Good examples are we are	
17	using very conservative assumptions in terms	
18	of loss of offsite power.	
19	One of the parameters this facility	
20	has used is loss of off-site power for a	
21	thousand hours. It's a long time. Forty days	
22	with no power. There's a lot of action that	

		Page
1	could be taken during a 40-day period but	
2	there are conservative assumptions in terms of	
3	what those event probabilities are, what the	
4	distribution of those events are. Those are	
5	all essential elements to a PRA.	
б	MEMBER MANSFIELD: But, for	
7	instance, on a thousand hour loss of offsite	
8	power it's probably due to some event that	
9	will take all the bridges down. If you were	
10	thinking of trucking in a diesel, you know,	
11	you don't have many options. Once you've	
12	built a plant, I think you have to consider	
13	that the options are totally limited.	
14	Another argument for having	
15	everything reviewed, I'm reminded of the	
16	complex codes used for fire protection	
17	calculations. They are not only reviewed	
18	externally, they are reviewed on a national	
19	basis. There are whole code cases on how you	
20	calculate how fires spread in a building.	
21	Your models for hydrogen generation	
22	and detonation deserve a level of review	

		Page	168
1	that's equally strong. Do you agree to that?		
2	MR. ASHLEY: We believe we have		
3	subjected these models to very extensive		
4	independent review. This is the methodology		
5	even from the beginning with world renowned		
6	experts in the specific areas and specific		
7	disciplines including Dr. Shepherd's ongoing		
8	involvement and the 12 members of the HPAV		
9	Independent Review Team.		
10	This has also gotten a lot of		
11	attention. Some of the documentation has been		
12	provided. I believe, Dr. Shepherd, that the		
13	7-11 document has been provided to the Nuclear		
14	Regulatory Commission.		
15	DR. SHEPHERD: I can comment on this		
16	a little bit. I was recently involved in		
17	review of advanced reactor design for		
18	licensing and they were attempting to do some		
19	evaluation of a situation where they had		
20	detonation in some piping and I got permission		
21	to transmit this document, this so-called 07-		
22	11 document, and I felt that would really		

	Page 169
1	substantially help the NRC and the industry
2	out in doing that.
3	I agree with you that in the best of
4	all worlds we would have a broad exposure and
5	review and participation from many
6	communities. This is a very specialized
7	business. There's not really that many people
8	who are working on the subject of detonations
9	inside of pipes.
10	MEMBER MANSFIELD: There's not many
11	people that are working with such consequences
12	either.
13	DR. SHEPHERD: Well, that's right.
14	It's a very small community. You could ask
15	the National Academy of Sciences to be
16	involved and so on but the difficulty is
17	really in getting enough folks together and
18	having a critical mass. Loss of life due to
19	fire, I would point out, is something that is
20	of much more substantial and broader interest
21	to the society.
22	MEMBER MANSFIELD: But that is

Г

Page	170
Fage	т,О

	F
1	until there is a radiation incident.
2	DR. SHEPHERD: I understand.
3	MEMBER MANSFIELD: On the question
4	of unsteady expansion behind the detonation
5	front, you are proposing to examine whether
6	you can model this with a double exponential.
7	The parameters in a double exponential would
8	be what, would they be functions of time?
9	DR. SHEPHERD: What you're
10	addressing is the empirical description that
11	is being used for deflagration to detonation
12	transition. I just want to make a distinction
13	here, Dr. Mansfield, to be clear. When we
14	treat propagating detonation waves we have a
15	very sound basis to do this, the so-called
16	Taylor's Altovich Model, and this comes from
17	solving some gastronomic equations. That is
18	something we have a very clear grasp on.
19	What is much more difficult to do is
20	when we have transition from a deflagration to
21	detonation we have a very transient event.
22	The pressures that we get out of that are

something that are different each time we do 1 2 that experiment. What we strove to do in constructing a model pressure signal was to 3 4 construct something that would bound the 5 strains that were measured by calculated 6 strains using that load input. 7 Those exponential functions 8 currently the version of that that has been 9 implemented today uses constants for those --10 time constants -- but it has been proposed, 11 particularly by the independent review team, 12 that correlation be reexamined and potentially that those constants could be calculated so 13 14 that they depend on other variables. For example, the size of the gas 15 16 pocket. They would not necessarily be time 17 dependent. The time dependence would all be 18 in the exponentials but the time constant 19 itself would be depend upon the scale of the 20 system. 21 I would point out, though, that on 22 the other hand all that would do is provide a

> Neal R. Gross & Co., Inc. 202-234-4433

Page 171

	Page 172
1	little bit more of a connection to the physics
2	of the problem. I don't believe that the
3	Independent Review Team felt that it would
4	really necessarily change the answer in terms
5	of what the peak strains were.
6	MEMBER MANSFIELD: Wouldn't it
7	change the impulse?
8	DR. SHEPHERD: This is an
9	interesting question. What happens in these
10	problems is it's a kind of a mixed load. Both
11	the peak pressure and the duration are
12	important. Quite frankly it's an ad hoc
13	correlation.
14	There's a lot not to like about it
15	but what you really want to make sure that you
16	do is that you bounded all of the data that
17	you have and that's how it was selected.
18	There's a lot of changes that can be made to
19	that. There is not a unique way to prescribe
20	it because it's not based on a detailed
21	physical description.
22	MEMBER MANSFIELD: On the issue of

	Page 173
1	bends in elbows and asymmetry factors, the
2	variables used to calculate asymmetry factors,
3	or estimate asymmetry factors, are those going
4	to be considered distributed because they are
5	epistemically unknown or uncertain?
6	MR. ASHLEY: The asymmetry factor I
7	can let Dr. Shepherd weigh in on that but
8	asymmetry factors actually were developed from
9	the correlations with the test.
10	MEMBER MANSFIELD: Okay. So those
11	test results.
12	DR. SHEPHERD: Both test results and
13	there are some very nice pencil and paper
14	analysis. I'm patting myself on the back
15	here. I wrote a whole report about it. It's
16	basically the kind of analysis that you do
17	just when you have a garden hose and you turn
18	it on and it starts flopping around.
19	It's just momentum conservation.
20	There's nothing all that fancy about it. That
21	is pretty sound. I would say it's more than
22	pretty sound. I would say it's one of the

	Page 174
1	significant accomplishments we have is that we
2	have a good method for calculating the forces
3	on detonation.
4	MEMBER MANSFIELD: So you think
5	those are quite precise?
б	DR. SHEPHERD: Yes. They are
7	precise but underlying that is you have to say
8	I have a detonation in this bend. That's
9	what's imprecise.
10	DR. SHEPHERD: Of course but we know
11	that's where all the
12	MEMBER MANSFIELD: Right.
13	DR. SHEPHERD: There is no
14	imprecision once you tell me I've got a
15	detonation in the mixture with 45 percent
16	hydrogen and nitrous oxide at 112 kPa and 50
17	degree C I can tell you what that force is
18	within 10 percent.
19	MEMBER MANSFIELD: Mr. Ashley, in
20	your operation frequency analysis
21	calculations, I'm referring to the so-called
22	008 report, you use failure data above the

1	
	Page 175
1	means modes or error factors from Savannah
2	River, from EG&G [Edgerton, Germeshausen, and
3	Grier, Inc.], and apparently Bechtel has its
4	own reliability, availability,
5	maintainability, inspectability database.
6	What is the pedigree of those? Do
7	they include or are they consistent with a
8	very large database for industrial equipment
9	that is maintained by NRC and NRC contractors
10	and IEEE [Institute of Electrical and
11	Electronics Engineers] gold book and things of
12	that nature?
13	MR. ASHLEY: Yes. As we talked
14	about a little bit earlier, Dr. Mansfield, in
15	terms of the justification for all of the
16	probability distributions that are being used
17	in the QRA, in the quantitative risk analysis,
18	there is a basis, the basis being a
19	comparative basis back to substantiated
20	information. If there is information that we
21	need to use because, as you know, some of our
22	equipment is unique, then there will be a

1		
		Pa
1	basis provided that substantiates those	
2	distributions.	
3	MEMBER MANSFIELD: Most of those	
4	distributions show up in the databases as a	
5	central value and error factors on each side.	
6	MR. ASHLEY: Actually, one of the	
7	recommendations that came out of the HPAV IRT	
8	is a number of these distributions were	
9	modeled as triangular distributions. That	
10	presumes that you know a maximum and that you	
11	know a minimum.	
12	MEMBER MANSFIELD: No. That's the	
13	precisely the answer I didn't want unless you	
14	prove to me that there is no possibility of an	
15	extreme event past where that triangle ends.	
16	MR. ASHLEY: You didn't let me	
17	finish. Those are being changed.	
18	MEMBER MANSFIELD: Okay.	
19	MR. ASHLEY: Because we know that	
20	there is no finite maximum and minimum for	
21	many of those distributions. The original	
22	drafts of those distributions did indicate	

Page 176

Page 177 triangular distributions. As I said, that 1 2 would presume that you know the maximum and 3 the minimum. In a true probability 4 distribution you know that you don't. 5 MEMBER MANSFIELD: If the data 6 shows -- if the handbook data or the databases 7 show central values plus error factors in 8 either direction, that suggests to me that 9 they came from log normal distributions because that's exactly the way to specify the 10 standard deviations of a log normal 11 12 distribution. Do you think that -- do you share the widespread prejudice that log normal 13 14 distributions are in some sense natural for 15 these complex phenomena that involve multiple 16 parameters? 17 MR. ASHLEY: I can't say that I 18 share that but, as I said, we will develop the 19 distributions for those specific functions and 20 those will be provided both for the peer 21 review as well as will be open to anyone's 22 review.

Page 178 You mentioned in MEMBER MANSFIELD: 1 2 response to our question on code cases for extending the BDOT 31 code to explosive events 3 4 that it's not applicable. Is that really 5 precise? The 300-C3 and 300-C5 are applicable 6 but they don't solve your problem completely. 7 Appendix P on deflagration loads, those are 8 certainly applicable. Aren't they? 9 MR. ASHLEY: When we look at a submittal of a code case, obviously you have 10 11 to step back and ask yourself the question what are you asking the code to rule on. 12 As I think Dr. Shepherd indicated, B31 has 13 14 established a subcommittee that is looking at development of a standard which is this is 15 16 very much not taking existing code and asking 17 the code for a ruling of -- your methodology 18 for adapting the existing code. 19 You're not also asking for a code 20 interpretation. This, in fact, is as the code 21 prescribes, the engineers identified that 22 there is a phenomena. There are loads. There

	Page 179
1	is a condition not addressed by the code. The
2	competent engineer as supported by the
3	necessary expertise is developing that
4	methodology within the framework of the code.
5	MEMBER MANSFIELD: After all, the
6	static code was developed to there's some
7	physics behind that. I mean, fiber bending
8	strength and things like that. The approach
9	to the Dinex vessel used a lot of physics
10	about metals and things like that and
11	presumably can serve as the basis for trying
12	to extend that.
13	CHAIRMAN WINOKUR: Ms. Roberson has
14	a question.
15	VICE CHAIR ROBERSON: Connecting to
16	Mr. Mansfield's question. In response to
17	question 5C, I'm going to ask you, Mr. Ashley,
18	because you are identified as a primary author
19	of the response, the question was identified,
20	"Other defense nuclear facilities that allow
21	gaseous deflagration, detonations in process
22	piping"

Page 180

	P
1	In your response you sited the
2	Defense Waste Processing Facility in H-Canyons
3	at Savannah River as having been evaluated to
4	allow for gaseous deflagration, detonations,
5	and process piping. Then you say the safety
6	design strategies for these facilities haven't
7	been provided as part of the response.
8	I guess the question is we're asking
9	for the reference for those. We understand
10	that they were reviewed to determine the
11	probability and the capability of the as-built
12	facilities to handle those following the two
13	international events but we are not aware that
14	was a goal in the design strategy so we are
15	asking for references if you have any. That's
16	one.
17	MR. ASHLEY: Yes. I think I would -
18	- you know, those are other facilities, other
19	DOE facilities that I would refer to DOE to be
20	able to provide those. As the contractor, I
21	wouldn't be the one to provide those but I
22	would

		Page	181
1	VICE CHAIR ROBERSON: Okay. That's		
2	one. Then the second question on the same		
3	response in regard to the Dinex facility which		
4	your response is clearly the Board does have		
5	a lot of knowledge about this. We understand		
6	for that facility they also developed and		
7	submitted a code case and they were very		
8	discrete on specific actions that resulted.		
9	You say you gained insights from that. What		
10	insights did you gain?		
11	MR. ASHLEY: That's correct.		
12	Obviously one of the experts that has		
13	supported us was working at Los Alamos at the		
14	time and was actually one of the authors of		
15	the code case. He has been on our team since		
16	the beginning so obviously the insights that		
17	were gained through development of that code		
18	case, that individual was able to bring to		
19	bear to development of our criteria. That		
20	individual is Ed Rodriguez.		
21	VICE CHAIR ROBERSON: Okay.		
22	CHAIRMAN WINOKUR: Dr. Mansfield.		

Γ

Page 182 I'm sorry to 1 MEMBER MANSFIELD: 2 take so much time but I'm the guy who was 3 assigned this stuff so I've got to do it. On 4 the 021 report, the implementation of closure 5 plan for the HIRT report, you mentioned that 6 the inline component test plan is not 7 completed and you've only done limited 8 testing. Do you have a time line for that 9 when you're going to have an inline component test plan? 10 11 MR. ASHLEY: Yes. We expect to have 12 that test plan and test acceptance criteria, I believe, by the end of November, that time 13 14 We're working that obviously to frame. 15 support the project schedule for procurement. 16 The nature of our procurement processes are 17 We obviously will have to source the long. 18 qualified lab to be able to do that testing. 19 There are a number of labs that are 20 qualified to do that type of testing, not just 21 going back to the one laboratory that we had 22 used previously in our testing. We are moving

on the schedule necessary. 1 2 I think it is important to point out 3 though, that we did do demonstration testing, 4 not qualification testing when we were doing 5 the large scale testing down at Southwest. We 6 believe that provides us the confidence that 7 we will be able to procure equipment that will 8 meet our requirements. 9 MEMBER MANSFIELD: I'm sorry to 10 have passed you up, Secretary Triay. Does 11 anything you heard here this morning communicate to you that it's pretty urgent 12 13 that we get a risk policy with some direction to contractors on how to handle these issues?4 14 15 DR. TRIAY: I believe that is why I 16 offered Dr. Krahn to come up yesterday. Let 17 me just summarize perhaps in a little bit more 18 detail the work that he is doing as the head of the Technical Authority Board. 19 20 The Environmental Management Program 21 worked with the Board to promulgate some of 22 the basic principles of Standard 1189 through

	Page 184
1	the Technical Authority Board ahead of the
2	formal policy of the Department because we had
3	facilities that were in the design and were
4	being built for tank waste across the complex.
5	I believe the Technical Authority
6	Board can serve the same function for the
7	waste treatment plant, the policy that I
8	promulgated at the Environmental Management
9	Program level through the Technical Authority
10	Board.
11	MEMBER MANSFIELD: It seems to me
12	you're the one most affected by the incomplete
13	art of probabilistic safety assessment at DOE.
14	Frankly, this needs a champion. You've heard
15	today that many of the questions that we've
16	had would have disappeared, would not have
17	been here, if certain NUREGs had been accepted
18	by the project at the start.
19	I mentioned 1855 which says that all
20	epistemic variables should be considered
21	candidates for being random variables. That's
22	a very good thing to do and is widely done.

Page 185 It was not done here until it was discovered 1 2 late in the process. 3 I ask you to consider being the 4 champion for accelerating and getting a DOE 5 policy/directive/manual/whatever it takes to 6 give Contract a head start on what they are 7 really going to have to do about this.4 8 DR. TRIAY: As you know, we work very closely with HSS [Health, Safety, and 9 10 Security]. Mr. Glenn Podonsky is a tireless worker when it comes to addressing issues of 11 12 this nature. In order to establish the 2009-1 implementation plan we have established in the 13 14 Department a risk working group. The QRA has been fully vetted with the risk working group. 15 16 The independent peer review that the risk working group charter on the ORA has 17 18 given findings and conclusions to the HPAV 19 Independent Review Team. The Secretary has 20 stated in the implementation plan for 21 Recommendation 2009-1 that when the Department 22 used quantitative methods to inform safety

	Page 186
1	analysis it did so in a manner that was
2	consistent with accepted industry standards.
3	The Risk Working Group as a result
4	have sponsored the QRA peer review that I was
5	just referring to. I believe that the work of
6	the technical authority board will serve to
7	inform the ultimate addressing of
8	Recommendation 2009-1 just like we did with
9	the Standard 1189.
10	MEMBER MANSFIELD: I would just
11	counsel you that there is more to QRA than
12	Abelian algebra spreadsheets, etc., etc. It's
13	all in the models. It's all in what physics
14	you put into it and what uncertainty is in
15	there. That's what there needs to be a policy
16	on.
17	DR. TRIAY: As we have done before,
18	we will have a wide guidance on the subject of
19	the QRA and we will establish a pilot with NEM
20	like I was discussing yesterday that will
21	inform the work of the division.
22	I would also like to point out, Mr.

i		
		Page
1	Mansfield, that very detailed level 3 PRAs are	
2	used in the commercial nuclear world and those	
3	analyses do not irrevocably lead to complex	
4	controls. I believe that we will satisfy the	
5	Board with respect to the QRA process.	
6	We will establish clear guidelines	
7	for this, as well as other programs in the	
8	Department and in the Environmental Management	
9	Program moving forward. I do believe that	
10	this is going to be a very important tool in	
11	the nuclear world within the Department of	
12	Energy like it is already as a best industry	
13	practice.	
14	MEMBER MANSFIELD: I just wanted to	
15	get that little lick in there.	
16	Mr. Ashley, I want to quote	
17	something from the 021 report on page A-3.	
18	"The use of a relative probability among event	
19	sequences calculated with an ignition	
20	probability of one rather than an absolute	
21	value, for instance, 10 to the minus 5 as a	
22	threshold, will be less sensitive to model	

Page 188

1 uncertainties." Can you tell me what that
2 means?

MR. ASHLEY: 3 What they means is if 4 you look at certainly the preliminary results 5 that we provided out of our quantitative risk 6 analysis, and I think they have affectionately 7 been referred to as the horse tails, it is 8 pretty clear that once a bubble forms that is 9 ignitable, that is combustible, the probability of ignition then equal to one is 10 11 overriding in terms of that probability 12 distribution.

13 The comment is that as we go into 14 the sensitivity, as we develop the additional probability distributions, the feeling, the 15 16 judgment is that may not significantly change 17 the outcome of the analysis based on that one 18 parameter which is not a distribution. It's a probability of one of ignition. 19 20 As we go through the sensitivities 21 we may find as we go through those and

22

Neal R. Gross & Co., Inc. 202-234-4433

development of the design tool, we may find

that is an overriding parameter that drives 1 2 the results. 3 MEMBER MANSFIELD: Thank you. Ι 4 think I understand. On page A-5 in listing 5 the plant level events, you have process pipe 6 leaks and fires and floods and things. You 7 don't explicitly have loss of offsite power, 8 although it's mentioned at the bottom of A-4. 9 Are you going to consider loss of offsite power in the distribution for repair time or 10 restoration time as initiating events? 11 12 MR. ASHLEY: Yes. And distribute 13 MEMBER MANSFIELD: 14 them? 15 MR. ASHLEY: Yes. 16 MEMBER MANSFIELD: Okay. Your 17 response to finding 2-6 I find particularly 18 heartening. You have committed yourself to 19 include -- you're going to update the design 20 tool to include distributed values in lieu of 21 point values in all other instances except 22 those where there is sparse data or not agreed

> Neal R. Gross & Co., Inc. 202-234-4433

Page 189

Page 190 upon among subject matter experts and be 1 2 justified by industry experience. I think that is very helpful. 3 4 I just urge you there are ways of 5 getting probability density functions when 6 data is sparse and not agreed to as well, 7 extreme value theory type thing. It's never 8 a good idea to leave tails out. If they are 9 going to hurt you in mono calculation, they 10 are going to hurt you anyway so you don't want to eliminate it before you start. 11 12 MR. ASHLEY: Yes. 13 MEMBER MANSFIELD: Ms. Busche, 14 could you ever handle a safety analysis that had a probability of ignition less than one? 15 16 Would you know what to do with it? 17 MS. BUSCHE: The answer is yes, I 18 could handle it. Right now with the current 19 design I have no mechanism to actually write 20 a meaningful control for that because I don't 21 know what I don't know. It's a pretty complex 22 design.

	Page 191
1	MEMBER MANSFIELD: It's complex
2	enough that everybody that I know that runs
3	into this problem controls it by having
4	ventilation and igniters which is what you had
5	in the original safety class design.
6	I've got a few things here. I'm
7	almost finished here. On page A-10 you talked
8	about a common relationship between the
9	normalized run-up distance, cell size, and
10	reaction zone length. Dr. Shepherd, can you
11	tell me is this something new that I haven't
12	heard of?
13	DR. SHEPHERD: This is a pretty
14	arcane bit of physics but I guess we can talk
15	about it. The situation we're talking about
16	is we've got a section of pipe which is
17	partially or totally filled with combustible
18	gas. We're imagining we have a small ignition
19	source at one end so we start with a flame.
20	Through the process of flame
21	instability and generation of turbulence that
22	flame accelerates and ultimately becomes a

	Pag
1	detonation. The distance that it requires for
2	that to take place, that's the run-up length.
3	The question is we would like to be
4	able to predict that because clearly if things
5	don't transition to detonation, then
6	detonation is not something we need to be
7	considering in the safety analysis for that
8	particular situation. We need to have some
9	type of a correlation because this is not
10	something that is simple to predict.
11	It involves turbulence, one of the
12	last unsolved problems in classical physics.
13	It's quite complex so we resort to doing
14	experiments. The question is what would you
15	correlate that with. What do we have in terms
16	of dimensions.
17	We'll do a little dimensional
18	analysis here in class so we can have the
19	diameter of the pipe. We can have some
20	characteristic measure of the chemical
21	reaction length in the material. That's what
22	this cell size is about. You take those three

Page 192

Page 193 things and obviously there needs to be some 1 2 functional relationship. You have to do a little bit of 3 4 thinking about that. There are some 5 scientists who have worked in this area and 6 they have thought about how that might work 7 and that's what this is all about. 8 MEMBER MANSFIELD: It's much more clear when you describe it than it was on page 9 10. 10 11 DR. SHEPHERD: Yes. 12 MEMBER MANSFIELD: On page 11, I 13 believe you're saying that you're going to 14 generate distributed hydrogen generation rates -- will be developed. My question is when. 15 16 Is there a program to come up with a PDF, 17 probability density function, for gas 18 generation rates? 19 MR. ASHLEY: Yes. That's one of the 20 variables that previously was input as a point 21 variable where we are in the process of 22 generating probability distribution.

		Page 194
1	Dr. Mansfield, a couple of things	
2	that I need to clarify for the record. I	
3	think you probably just misspoke but the	
4	previous design did not have igniters in the	
5	WTP.	
6	MEMBER MANSFIELD: Well, you	
7	potentially have mason iron and silver and	
8	waste. Those are	
9	DR. SHEPHERD: But the implemented	
10	control did not have igniters. We did have	
11	vents.	
12	MEMBER MANSFIELD: You had purges.	
13	DR. SHEPHERD: Purges and flushes	
14	but didn't have igniters.	
15	MEMBER MANSFIELD: No, no. You	
16	don't. I should say there are ignition	
17	sources in that waste. It would be very hard	
18	for anybody to try to convince you that the	
19	waste mixture didn't have any nascent metals.	
20	MS. BUSCHE: That is correct.	
21	MR. ASHLEY: The other thing that I	
22	did misspeak earlier, the only WAC [Waste	

		Page
1	Acceptance Criteria] requirement is a	
2	measurement of hydrogen. There are no other	
3	gases that are required to be measured in the	
4	WAC.	
5	MEMBER MANSFIELD: So you're just	
6	going to assume that there's enough there	
7	are issues where I can think of batches	
8	where you would have very depleted nitrates	
9	and I don't	
10	MR. ASHLEY: We assume the oxidant.	
11	We assume the oxidant in the proportions so	
12	what we're interested in is the explosive gas,	
13	the hydrogen. We've evaluated that's the	
14	controlling mixture against the other gases,	
15	the methane.	
16	MEMBER MANSFIELD: But then the	
17	nitrogen and the rest of the oxidant are	
18	diluting gases.	
19	MR. ASHLEY: Yes. That's one of the	
20	HPAV independent review team findings that we	
21	have to address. As I said, those other gases	
22	cause a larger gas bubble which could change	

the dynamics. 1 2 MEMBER MANSFIELD: There were two 3 areas in here where it was uncertain enough to 4 me that I have to ask the question. This is 5 do with finding 4-2. Is the ignition location distributed? The ignition source location. 6 7 MR. ASHLEY: The ignition source is 8 assumed to be where the bubble occurs. 9 MEMBER MANSFIELD: Okay. It's in 10 the worst spot in the bubble. MR. ASHLEY: We actually -- the 11 12 location at which it starts is stochastic. I 13 think Dr. Shepherd can better speak to that 14 but it is stochastic. It could occur anywhere in the bubble. 15 16 MEMBER MANSFIELD: Okay. It won't 17 be at the worst possible spot at one end to 18 give you maximum run-up or anything like that. 19 It's going to be stochastically determined by 20 whatever the bubble link has to be. We'll 21 skip that, too.

Page 196

I'm coming rapidly to the end and I

Neal R. Gross & Co., Inc. 202-234-4433

22

	Page 197
1	just want to ask Dr. Shepherd when the long-
2	awaited tests on axial pulsing loading are
3	going to be completed. Weren't you tasked by
4	DOE to do some tests of axial loading?
5	DR. SHEPHERD: I'm a little
6	mystified, Dr. Mansfield. What are you
7	referring to precisely?
8	MEMBER MANSFIELD: I'm quoting from
9	one of the thousands of pages of paper that
10	Mr. Ashley gave me but I won't trouble you
11	with this here. My last question is really an
12	observation. I think it's a healthy rule in
13	Monte Carlo calculations to run them uselessly
14	long until you get a few outliers to
15	understand what the world is really doing.
16	You don't have to do that for every situation
17	but I know people that have been caught
18	because they haven't done that.
19	All right, Mr. Chairman.
20	CHAIRMAN WINOKUR: Thank you, Dr.
21	Mansfield.
22	Mr. Bader.

Page 198 Before I start on 1 MEMBER BADER: 2 the mainline of the questioning, I wanted to 3 follow up on the QRA. I had a question for 4 Dr. Triay. I'm looking at the peer review 5 that was done of the QRA methodologies and one 6 of the concluding sentences says, "Without further refinement of the modeling and 7 8 treatment of uncertainty the WTP runs the risk 9 of making inappropriate design decisions." I don't think that's anything you can let stand 10 11 or anybody would want to leave standing. Could you address how that's being resolved, 12 13 please? 14 DR. TRIAY: Yes. The HPAV 15 Independent Review Team took all of the 16 comments from the Risk Working Group sponsor, 17 a peer review team, and have given us very 18 specific recommendations and paths forward 19 which we do intend to implement. As I have 20 testified, until the HPAV Independent Review 21 Team looks at how we are intending to close 22 their issues, we're not pressing forward with

	Page 199
1	a finalizing the changes in the design.
2	MEMBER BADER: Is this something
3	that you would like to submit some additional
4	material on later?
5	DR. TRIAY: We would be happy to
6	submit for the record the statement of Dr.
7	Krahn as well as a detailed explanation of how
8	we are going to close the recommendations of
9	the Independent Review Team.
10	MEMBER BADER: Thank you.
11	Ms. Busche, we are going to repeat
12	some things, I think, that we touched on
13	yesterday in the evening. I believe you
14	agreed that the QRA design approach is a
15	qualified safety basis tool, or is not yet a
16	qualified safety basis tool. Is that correct?
17	MS. BUSCHE: Yes. Its primary
18	purpose is a design tool and it is not I'm
19	a little hesitant of the word qualified. The
20	use and application of that design tool is not
21	clearly established.
22	MEMBER BADER: Yes. It must meet

	Page 200
1	NQA-1 requirements under 414-1C.
2	MS. BUSCHE: Oh, yes.
3	MEMBER BADER: It has to be V&V.
4	Is that correct?
5	MS. BUSCHE: Correct.
6	MEMBER BADER: Going from there I
7	think we have discussed adequately the need to
8	protect certain assumptions which you will
9	have to determine as your analysis goes on.
10	MS. BUSCHE: Correct.
11	MEMBER BADER: And also calculated
12	results.
13	MS. BUSCHE: Correct.
14	MEMBER BADER: I believe we also
15	touched on whether or not you currently had
16	enough information to do a plan to write the
17	TSRs and LCOs [Limiting Condition of
18	Operation] and I believe your answer was no
19	you don't.
20	MS. BUSCHE: It's across the board.
21	Yes, correct.
22	MEMBER BADER: I really have only

		Page	201
1	one major area of concern that we haven't		
2	addressed that comes out of all these things.		
3	I've been making a short list. We have as yet		
4	to be done large-scale testing, resolution of		
5	the HIRT findings, and then use of the QRA as		
6	a design tool, again a first-of-a-kind		
7	application.		
8	Mr. Ashley, my understanding is that		
9	you are considering that the design is not		
10	complete until the safety basis is completed.		
11	Is that correct? In other words, you may find		
12	things as a result of developing the safety		
13	basis that impact your design.		
14	MR. ASHLEY: The design criteria has		
15	been established. We obviously have to		
16	complete the development of the probability		
17	distribution and the VNV of the quantitative		
18	risk analysis we need to complete the		
19	calculations necessary to support the		
20	methodology. We have a schedule for		
21	completing that.		
22	The criterion methodology at that		

		Page
1	time will be complete for implementation.	
2	Now, the process of implementation, running	
3	the QRAs for each of the individual routes,	
4	running the piping analysis, along with	
5	completing the design is going to be the	
6	purchase of components that are qualified.	
7	That is a process.	
8	What Ms. Busche is referring to are	
9	there going to be any additional inputs and	
10	assumptions used in the QRA that will then	
11	have to be protected as part of the safety	
12	basis of the facility.	
13	MEMBER BADER: I'm not being clear.	
14	As a result of the large-scale testing as a	
15	result of implementing the HIRT findings and	
16	what comes out of the analysis of these	
17	findings, to me there is a real risk that you	
18	may find something that challenges a piece of	
19	your design and has to be incorporated.	
20	MR. ASHLEY: Understand the design -	
21	- the changes in the design are not complete	
22	or they have not been started. I need to	

		Page
1	clarify there is no additional planned large-	
2	scale testing. These is component	
3	qualification testing.	
4	MEMBER BADER: No, no. I'm going	
5	back to mixing.	
6	MR. ASHLEY: Oh.	
7	MEMBER BADER: I'm sorry. I'm not	
8	being clear enough. I'm looking at the whole	
9	project now and looking at the number of	
10	things that have to be addressed so large-	
11	scale testing of the pulse jet mixing. Then	
12	the HIRT findings have to be implemented, have	
13	to be addressed and the fixes implemented.	
14	To me all these things you're going	
15	to find something in all of this that impacts	
16	your design. It's going to have to be	
17	reflected in Ms. Busche's safety analyses and	
18	work. Then your design is going to be	
19	impacted by what she finds. Is that correct?	
20	MR. ASHLEY: Yes. That process	
21	between design and nuclear safety is an	
22	iterative process. Any design change is	

Page 204 reviewed by nuclear safety to determine if 1 2 we've introduced additional hazard. If we've introduced additional hazard, that has a 3 potential iterative affect on design. 4 That is 5 the design process in the nuclear industry. 6 MEMBER BADER: What this takes me 7 to is the concern that there will be pressure 8 on your, Ms. Busche, to do your work. I think 9 the pressure is going to come from unexpected I mean, there is a real desire to 10 sources. 11 finish this plant to get it up and running. 12 Do you feel up to this working under this kind 13 of pressure? 14 MS. BUSCHE: Yes. 15 MEMBER BADER: And that takes me 16 really to my last question which is, Mr. 17 Russo, I hope you are going to support Ms. 18 Busche in what she needs to do and do it 19 unequivocally, directly, and simply and that 20 you are going to protect her. 21 MR. RUSSO: I think she will tell 22 you that about seven months ago I met her

	Page 205
1	outside of a meeting where there was that
2	healthy tension between design and safety
3	basis. I said, "Donna, I have your back."
4	MS. BUSCHE: That was a true story.
5	MEMBER BADER: I expect Mr. Knutson
6	and Dr. Triay would support Mr. Russo in that.
7	MR. KNUTSON: Absolutely. Donna is
8	an incredibly talented talent and incredibly
9	important part of the project team.
10	DR. TRIAY: As you know we have a
11	network of nuclear safety experts with the
12	Environmental Management Program that work
13	very closely together. Their leader is the
14	Deputy Assistant Secretary for Safety and
15	Operations Oversight. Our complete support is
16	always given to that network of nuclear safety
17	experts because of their excellent work have
18	led to the Department having very robust
19	nuclear safety record.
20	MR. SAIN: I would like to add that
21	URS supports Donna fully with the stable of
22	safety basis experts that we've got.

Page 206 MEMBER BADER: Those are the 1 2 answers I fully expected I would get but I wanted to ask to be sure. I'll ask Ms. Busche 3 4 one final question and that is are you ready 5 for the opportunity on a plant that's got a 6 lot of first-of-a-kind things to have the 7 first-of-a-kind safety basis for QRA? MS. BUSCHE: Yes. 8 9 MEMBER BADER: I have no further questions, Mr. Chairman. 10 11 CHAIRMAN WINOKUR: Mr. Dwyer. 12 MR. DWYER: Just for clarification. 13 Dr. Shepherd, in your response to question 12 14 that the Board received from DOE --15 DR. SHEPHERD: Yes. 16 MR. DWYER: -- you indicated that 17 you were not yet satisfied with, I quess, the 18 resolution of some issues you raised with 19 Dominion Engineering. Has there been any 20 further development? 21 DR. SHEPHERD: Thanks for the 22 opportunity. This goes to the question that

Page 207

		P
1	Ms. Roberson asked me at the beginning of the	
2	session. I have gone back and I've looked at	
3	the correspondence. I would like to say in	
4	general that I have been very satisfied with	
5	the responsiveness of both Bechtel and	
б	Dominion to my comments.	
7	It often takes some time due to the	
8	complexity not only of the technical issues	
9	but the contracting to get those resolved. I	
10	have a long-term commitment to this project.	
11	I'm tenacious in getting my concerns	
12	addressed. There are some folks here in the	
13	audience who can attest to that.	
14	In this particular case for this	
15	particular letter that I wrote on March 27th	
16	there were four documents that I reviewed. I	
17	have had discussions with Dominion staff and	
18	Bechtel about those. We have discussed a path	
19	forward that I believe will resolve my issues.	
20	I think that they have been	
21	otherwise occupied in the last six months and	
22	have not gotten back to that but I have spoken	

	Page 208
1	with Craig Jones and Mike Wintick about it and
2	there is a plan to have those addressed. I
3	expect to be reviewing those documents this
4	fall.
5	MR. DWYER: So the summary is you
6	believe you have a path forward but resolution
7	not yet achieved?
8	DR. SHEPHERD: Yes. That's right.
9	I don't see any obstacles to resolving that.
10	It's a matter of their returning a draft to
11	me, my going through that discussing it with
12	them resolving any remaining issues. That's
13	typically the fashion in which this gets done.
14	MR. DWYER: That's all.
15	MEMBER BADER: Dave, did you want
16	to make a comment?
17	MR. BROCKMAN: Yes. I just wanted
18	to add to your concern that you posed to Ms.
19	Busche. The authorization basis approval and
20	the oversight of that and watching that is,
21	you know, independent in my office. I can
22	assure you we watch for that very closely and

won't allow it.

1

2	MEMBER BADER: Thank you.
3	CHAIRMAN WINOKUR: I have a few
4	questions. In the answers to the questions
5	you talked about, I guess you used the words
6	"readily accomplish repair" if there is a
7	breach in piping in the hot cells. Can you
8	give some insight into what that will involve
9	and the time frames and depending on the kind
10	of waste it is whether it's a slurry or some
11	other type of waste.
12	MR. ASHLEY: To begin with, you
13	know, I think it warrants addressing for the
14	record some of the statements about the
15	consequences and how catastrophic the
16	consequences may be. I think it is important
17	once again to reiterate that the piping is
18	designed the piping and inline components
19	will be designed to withstand these events.
20	Now, if you go to the extreme that
21	the probabilities are never zero and if there
22	were damage to a piping component that was in

	Page 210
1	the hot cell, the expectation is that damage
2	would result in a leak. Many of these
3	components are not welded components, the
4	jumpers. They are made to be replaceable.
5	That equipment has to be remotable for repair
6	and maintenance.
7	The expectation is that a repair or
8	replacement would be similar to a repair or
9	replacement necessary for normal plant
10	maintenance. Part of our OR model is
11	evaluating how long it takes if we have a pump
12	failure, if we have a valve failure under any
13	situation.
14	It could be just normal failure,
15	wear failure, any other type of failure
16	operations has looked at, what it would take
17	under those normal service conditions to
18	replace those components. The expectation is
19	the causes of damage due to potential cause
20	of damage due to a hydrogen event would be
21	very similar.
22	CHAIRMAN WINOKUR: Does that include

	Pa	ge
1	the cleanup of the waste? How does that	
2	factor in in terms of what it would take to	
3	become operational again in that area.	
4	MR. ASHLEY: I don't believe	
5	operations has developed all of the procedures	
6	necessary. There will be leaks in the cell.	
7	Jumpers will leak over the life of the	
8	facility. The cells are lined. The cells	
9	have sumps so they are designed to facilitate	
10	any necessary cleanup if there were a spill or	
11	a leak in the cell.	
12	CHAIRMAN WINOKUR: Let's assume	
13	there was this leak or this serious leak. How	
14	long would it take to clean it up? What do	
15	you think?	
16	MR. ASHLEY: I don't have that	
17	information. We can provide that for the	
18	record. I would need to consult with the	
19	operations folks.	
20	CHAIRMAN WINOKUR: All right. I've	
21	gotten so few notes during this hearing but I	
22	did get one so I have a question for you, Dr.	

		Pag
1	Shepherd. Obviously there was work done in	
2	Southwest Research Institute and they	
3	developed the pressure time histories. Do you	
4	have any concerns about the studies that they	
5	performed whether they were valid or not?	
6	DR. SHEPHERD: I believe their work	
7	is valid. I think there are particular	
8	details that we've discussed that need careful	
9	attention to but by and large it's valid.	
10	CHAIRMAN WINOKUR: Okay. My final	
11	question is for you, Mr. Knutson. We barely	
12	met. We just heard throughout these	
13	discussions this morning that this design is	
14	not complete at this point so the question is	
15	how does DOE pivot the project when the design	
16	is not complete? What does that mean?	
17	MR. KNUTSON: I think I talked about	
18	that a little bit yesterday. We've spent a	
19	lot of time talking about the pre-treat	
20	facility. There are five facilities in this	
21	project. The pre-treat facility is the one	
22	that we are reserving the most open schedule	

Neal R. Gross & Co., Inc. 202-234-4433 Page 212

	Page 213
1	time to be able to respond to issues that may
2	emerge from testing or QRA responses or even
3	the development of the TSRs.
4	It's a very large project and there
5	is an awful lot of that project that needs to
6	be moving towards commissioning and start-up
7	and that's what I mean by saying it's time to
8	pivot.
9	There may be elements of the project
10	that we need to take in all deliberate haste
11	and ensure ourselves that the path forward is
12	clear and within the expectations that we've
13	set for performance on this project. That
14	doesn't mean the rest of the project needs to
15	stand still waiting for that.
16	CHAIRMAN WINOKUR: So the pivoting
17	doesn't mean that you don't have a design
18	effort going on still?
19	MR. KNUTSON: That's correct.
20	CHAIRMAN WINOKUR: Okay. Dr. Triay,
21	is there anything you want to say about that?
22	DR. TRIAY: I completely agree with

	Page 214
1	what Mr. Knutson has said. We designed the
2	concept of trying to ensure that the rest of
3	the program was ready to feed the waste to the
4	waste treatment plant, that the rest of the
5	infrastructure was ready.
6	As a matter of fact, we assigned
7	\$300 million of Recovery Act monies to the
8	tank farm infrastructure so that we could be
9	ready for the commissioning and ultimate
10	operations of the waste treatment plant. I
11	believe that Mr. Knutson is correct that this
12	is the appropriate time for that transition in
13	the site office.
14	I believe that Mr. Brockman is of
15	the same opinion. We will work very closely
16	together to ensure that when this plant starts
17	operating the rest of the infrastructure is
18	ready to support its safe operations.
19	CHAIRMAN WINOKUR: Thank you. Do
20	other Board members have questions?
21	VICE CHAIR ROBERSON: No.
22	CHAIRMAN WINOKUR: All right. I

Page 1 want to thank our witnesses very much. This 2 concludes the testimony from our staff as well 3 as the Department and its contractors and 4 their experts. 5 We will now call on members of the 6 public who have signed up to speak. As I	e 215
2 concludes the testimony from our staff as well 3 as the Department and its contractors and 4 their experts. 5 We will now call on members of the	
 3 as the Department and its contractors and 4 their experts. 5 We will now call on members of the 	
4 their experts. 5 We will now call on members of the	
5 We will now call on members of the	
6 public who have signed up to speak. As I	
7 indicated earlier, I ask that each speaker	
8 limit remarks to about five minutes. If time	
9 permits, I will extend that time for	
10 additional comments.	
11 The first person on the speaker list	
12 is Jen Gregory.	
13 MS. GREGORY: Hello. I want to	
14 thank you for this opportunity to present	
15 public comments. My name is Jen Gregory and	
16 I work for Hanford Challenge, an organization	
17 that works in the public interest for a safe	
18 and robust cleanup at Hanford.	
19 You know, I think public comments	
20 are particularly important when making	
21 assessments about actions that could result in	
22 increased risks. Deciding the safety	

	Page 216
1	tradeoffs for time, money, or other reasons is
2	essentially a value judgement. I am hear
3	today to say that as a member of the public I
4	value erring on the side of safety.
5	To that end, I want to continue
6	presenting Hanford Challenge questions that
7	were interrupted yesterday. Why is a design
8	that cannot prevent flammable gas explosions
9	considered acceptable? There is a design
10	solution that prevents these explosions but it
11	is considered too expensive. Are explosions
12	in a hazardous nuclear facility ever
13	acceptable?
14	Why is a possibility of a nuclear
15	criticality considered acceptable at the waste
16	treatment plants? Internal documentation
17	indicates that nuclear criticality could occur
18	if the waste tanks are not adequately mixed
19	and plutonium settles to the bottom of the
20	tank.
21	Why has Bechtel proposed redefining
22	firewalls in the facility as non-safety items
I	

	Page 217
1	to save on cost? What justification can there
2	be besides money to propose such a move? Is
3	DOE considering the implications a broken
4	safety culture has on the safety of a waste
5	treatment plant? How will concerns surface if
6	employees who notice critical issues are
7	afraid to raise their concerns?
8	Why did DOE suddenly approve the
9	closure of technical issues after their own
10	work plans concluded that it will take 18
11	months or more to resolve these issues? Is
12	this approval related to the fact that the DOE
13	had a legally binding tri-party agreement
14	cleanup milestone to meet and that Bechtel had
15	\$6 million at risk if they didn't close a key
16	technical issue M3 by June 30th?
17	Is DOE considering the impact of
18	assigning one contractor to design and build
19	the waste treatment plant and another
20	contractor to operate the plant? Since
21	Bechtel is not responsible for operating the
22	plant, there is no contractual penalty if they

		Page	218
1	build a plant that does not work.		
2	For the first six years of design		
3	and construction of the waste treatment plant		
4	Bechtel lacked a vender quality assurance		
5	program. How can we assure that the quality		
6	of procured equipment and instruments is		
7	adequate without the necessary pedigree?		
8	Would this facility even be		
9	considered for licensing by the Nuclear		
10	Regulatory Commission or denied due to its		
11	quality indeterminate state? Doesn't the		
12	public deserve a plant that meets the safety		
13	standards of an NRC licensed facility?		
14	When the atmosphere has been		
15	poisoned by a history of reprisals against		
16	employees who raise concerns, the quality and		
17	safety of the plant will always remain		
18	indeterminate because important issues		
19	affecting future operations may not have been		
20	raised and addressed.		
21	The waste treatment plant design,		
22	especially the strategy of pre-treatment of		

	Page 219
1	the waste, is in jeopardy of failure. Meeting
2	deadlines to build a plant have overridden
3	safety and design considerations for the
4	operation phase. Thank you.
5	CHAIRMAN WINOKUR: Thank you, Ms.
6	Gregory. Please submit those comments for the
7	record.
8	The next speaker is Liz Madsen.
9	MS. MADSEN: Thank you for
10	soliciting comments from the public on the
11	issues that surround the design and
12	construction of Hanford's waste treatment
13	plant. My name is Liz Madsen and I work for
14	Hanford Challenge. I am also the Vice Chair
15	of the Public Involvement Committee of the
16	Hanford Advisory Board.
17	I appreciate your effort to bring
18	issues into the light and clarify the
19	confusion that surrounds this much-delayed
20	project. I am going to use the pronoun "we"
21	today.
22	I believe in systems that hold us

	Page 220
1	accountable and believe that in the end as we
2	age and die and the problems of Hanford go on,
3	we all take some responsibility in our
4	individual roles for shifting and changing and
5	finding the best solutions to achieve a robust
б	and complete cleanup.
7	A cornerstone of that cleanup is the
8	waste treatment plant. Hanford brings with it
9	incredible uncertainties. We have some
10	records. We have some sampling data but often
11	it is not enough information for actions and
12	assessments that require a high degree of
13	certainty.
14	Of importance to the waste treatment
15	plant is our lack of knowledge about Hanford
16	tank waste. Over the past few years I have
17	seen over and over how a situation with high
18	degrees of uncertainty results in pretending
19	that everything is under control and a default
20	position that when in doubt nothing is wrong.
21	As a member of the public I
22	appreciate any effort to cultivate an

Page 221 environment of transparency and openness where 1 2 expressing what we don't know is encouraged so 3 that we can get to a place of knowing. 4 Posturing confidence and knowledge wastes 5 precious time and tends to take us further 6 from robust solutions. 7 Yesterday a member of the DNFSB 8 showed a pointed observation from the 9 discussion defining how an issue can be closed when it is unresolved. What is closed is not 10 I wish it was not such a challenge to 11 closed. 12 use clear language and say what we mean. Ι wish that profit and schedule were not such 13 14 seductive factors in a game to make the right decision. 15 16 I am tired of seeing and hearing 17 about plans for solutions that are not believable. I often think about the time 18 19 frame of Hanford cleanup and long-term 20 stewardship. When I look around this room I 21 wonder who will still be working on this 22 project in 10 years, 20 years? Where is the

Page 222 dedication to follow through and bring this 1 2 painful process to fruition? 3 As one of the rare young people 4 involved, it is disheartening to receive the 5 message that everything is going to be fine 6 and see so much evidence to the contrary. 7 After 10 years no one in this room can 8 honestly assure me that the waste treatment 9 plant will operate safety and effectively. Thankfully we are here in front of 10 the DNFSB in an effort to publicly bring in 11 some sunshine clarifying positions and finding 12 truth in a situation that is so mired in 13 14 complexity and confusion. 15 It is my hope that everyone involved 16 is reminded frequently of the bigger picture. 17 We are here to protect future generations. Ι 18 want to tell my grandchildren a story that 19 ends, "Despite all the problems that plaqued 20 Hanford, we worked together and successfully 21 designed a plant that secured extremely 22 dangerous waste in glass to protect you."

Page 223 Thank you. 1 2 CHAIRMAN WINOKUR: Thank you, Ms. Madsen. Please submit that for the record. 3 4 I may pronounce this name wrong. 5 John Stang. 6 MR. STANG: That is correct. 7 CHAIRMAN WINOKUR: It's not your 8 name that's difficult. It's the handwriting. 9 MR. STANG: That's probably true. 10 I'm a reporter from Seattle. I don't have any 11 comments but I'm here to ask two questions of 12 Mr. Bader if I may. 13 CHAIRMAN WINOKUR: No, I don't 14 believe we are going to entertain questions at this point. 15 16 MR. STANG: Okay. I was told 17 yesterday that this was the appropriate way to 18 ask questions. 19 CHAIRMAN WINOKUR: No, I don't 20 believe so. You'll have to put them on the 21 record and we'll answer them. This is an 22 informational meeting. The Board will not be

Page 224 taking questions. 1 2 MR. STANG: Okay. I don't understand. 3 4 CHAIRMAN WINOKUR: I'm sorry for the 5 misunderstanding. Please just submit them for 6 the record. We will get back to you. 7 MR. STANG: In writing? 8 CHAIRMAN WINOKUR: Yes. 9 MR. STANG: Okay. Thank you. 10 CHAIRMAN WINOKUR: 11 There are two more names on this 12 list here and I have to just as a matter of 13 protocol make sure that they are not present 14 now, or wish to speak, that is. Susan Lekband 15 and Allen Bolt. My apologies. There was a 16 second page. Dick Dunning. 17 MR. DUNNING: Good morning, Mr. 18 Chair. It's actually Dirk Dunning. Today I'm 19 speaking entirely on behalf of myself. I'm a 20 registered professional chemical engineer also 21 trained in nuclear environmental control 22 systems and several other fields of

engineering. 1 2 I just wanted to make a couple of First I'll start by thanking you all, 3 points. the Board and the staff, for your diligent 4 5 work on all of this subject and all of the 6 long hours I know that you've put in by the 7 questions that you've asked. It's greatly 8 appreciated. 9 I also want to thank you very much 10 for your openness and transparencies in this 11 entire process. It's greatly appreciated by 12 all the citizens of the Northwest. I would also echo Liz Madsen's final 13 14 closing comment that though there are problems in building a facility of this complexity, and 15 there will be more, and some of them will be 16 17 really hoary, solving them is essential to 18 getting this plant operating and getting this 19 plant operating is essential for the 20 Northwest. Whatever these problems are we 21 need to find them and we need to resolve them. 22 All of the help of everyone involved is

1 essential in doing that.

2	In listening to the discussions
3	there are a couple of points that I think
4	could use some clarification. Back about 15
5	years ago or more as the Hanford tanks were
6	going through what were called rollover events
7	as gas was generated and the tanks would roll
8	over the researchers involved calculated that
9	the potential ignition energy was seven
10	millijoules for those gases.
11	That's extremely low. As you're
12	talking through the probabilities of ignition
13	and whether it should be one or something
14	else, with those kinds of energies I don't
15	doubt that there is the potential for ignition
16	wherever it is and that we don't know what
17	that is.
18	Something else for people who are
19	not from this region, and even for those here.
20	Hanford and the Northwest is home to the
21	Cascadia fault system off the
22	Oregon/Washington coastline. This is a fault

	Page 227
1	that is 1,000 kilometers long, about 100 miles
2	offshore. About every 350 to 1,100 years it
3	ruptures.
4	When it does that it ruptures with a
5	9.5 earthquake that goes on for about five-
6	and-a-half minutes. The expectation from the
7	studies is that if that event occurs at some
8	time in the next 50 years, all of the bridges
9	in western Washington and Oregon will
10	collapse.
11	Transportation systems will be down.
12	The major fuel transports out of Anacortis
13	heading south through Washington state into
14	Oregon will be disrupted for months at a time.
15	There isn't going to be any easy recovery and
16	there isn't going to be anybody coming to help
17	in the real near term. We are all going to be
18	on our own wherever we are in the region so I
19	would be very careful about that.
20	Also, it's important in recognizing
21	that those events principally people think
22	about earthquakes as having the first two

Г

Page1modes, the shear and compression waves, the P2and the S waves. What is often forgotten is3there are two other modes, the Love and4Rayleigh waves.5Particularly in large subduction6zone events the Love waves are important.7Those waves are at lower frequency roughly8with wave lengths comparable to the size of9the facilities and vessels at Hanford. Those10can cause somewhat different kind of11responses. It changes the spectral response12frequency and that's important in the13analysis.14Those are the principal ones I just15wanted to make sure you guys were aware of.16Again, thank you for all of your diligent17effort and work and keep it up.18CHAIRMAN WINOKUR: Thank you, Mr.19Dunning.20Larry Felton. Mr. Felton. Mr.21Felton is not present.22That concludes the public comment			
2 and the S waves. What is often forgotten is 3 there are two other modes, the Love and 4 Rayleigh waves. 5 Particularly in large subduction 6 zone events the Love waves are important. 7 Those waves are at lower frequency roughly 8 with wave lengths comparable to the size of 9 the facilities and vessels at Hanford. Those 10 can cause somewhat different kind of 11 responses. It changes the spectral response 12 frequency and that's important in the 13 analysis. 14 Those are the principal ones I just 15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present.			Page 2
3 there are two other modes, the Love and 4 Rayleigh waves. 5 Particularly in large subduction 6 zone events the Love waves are important. 7 Those waves are at lower frequency roughly 8 with wave lengths comparable to the size of 9 the facilities and vessels at Hanford. Those 10 can cause somewhat different kind of 11 responses. It changes the spectral response 12 frequency and that's important in the 13 analysis. 14 Those are the principal ones I just 15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present.	1	modes, the shear and compression waves, the P	
 Rayleigh waves. Particularly in large subduction zone events the Love waves are important. Those waves are at lower frequency roughly with wave lengths comparable to the size of the facilities and vessels at Hanford. Those can cause somewhat different kind of responses. It changes the spectral response frequency and that's important in the analysis. Those are the principal ones I just wanted to make sure you guys were aware of. Again, thank you for all of your diligent effort and work and keep it up. CHAIRMAN WINOKUR: Thank you, Mr. Dunning. Larry Felton. Mr. Felton. Mr. Felton is not present. 	2	and the S waves. What is often forgotten is	
5 Particularly in large subduction 6 zone events the Love waves are important. 7 Those waves are at lower frequency roughly 8 with wave lengths comparable to the size of 9 the facilities and vessels at Hanford. Those 10 can cause somewhat different kind of 11 responses. It changes the spectral response 12 frequency and that's important in the 13 analysis. 14 Those are the principal ones I just 15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present.	3	there are two other modes, the Love and	
6 zone events the Love waves are important. 7 Those waves are at lower frequency roughly 8 with wave lengths comparable to the size of 9 the facilities and vessels at Hanford. Those 10 can cause somewhat different kind of 11 responses. It changes the spectral response 12 frequency and that's important in the 13 analysis. 14 Those are the principal ones I just 15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present.	4	Rayleigh waves.	
 Those waves are at lower frequency roughly with wave lengths comparable to the size of the facilities and vessels at Hanford. Those can cause somewhat different kind of responses. It changes the spectral response frequency and that's important in the analysis. Those are the principal ones I just wanted to make sure you guys were aware of. Again, thank you for all of your diligent effort and work and keep it up. CHAIRMAN WINOKUR: Thank you, Mr. Dunning. Larry Felton. Mr. Felton. Mr. Felton is not present. 	5	Particularly in large subduction	
 with wave lengths comparable to the size of the facilities and vessels at Hanford. Those can cause somewhat different kind of responses. It changes the spectral response frequency and that's important in the analysis. Those are the principal ones I just wanted to make sure you guys were aware of. Again, thank you for all of your diligent effort and work and keep it up. CHAIRMAN WINOKUR: Thank you, Mr. Dunning. Larry Felton. Mr. Felton. Mr. Felton is not present. 	6	zone events the Love waves are important.	
 9 the facilities and vessels at Hanford. Those 10 can cause somewhat different kind of 11 responses. It changes the spectral response 12 frequency and that's important in the 13 analysis. 14 Those are the principal ones I just 15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present. 	7	Those waves are at lower frequency roughly	
 10 can cause somewhat different kind of 11 responses. It changes the spectral response 12 frequency and that's important in the 13 analysis. 14 Those are the principal ones I just 15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present. 	8	with wave lengths comparable to the size of	
 11 responses. It changes the spectral response 12 frequency and that's important in the 13 analysis. 14 Those are the principal ones I just 15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present. 	9	the facilities and vessels at Hanford. Those	
12 frequency and that's important in the analysis. 14 Those are the principal ones I just 15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present.	10	can cause somewhat different kind of	
 analysis. Those are the principal ones I just wanted to make sure you guys were aware of. Again, thank you for all of your diligent effort and work and keep it up. CHAIRMAN WINOKUR: Thank you, Mr. Dunning. Larry Felton. Mr. Felton. Mr. Felton is not present. 	11	responses. It changes the spectral response	
14Those are the principal ones I just15wanted to make sure you guys were aware of.16Again, thank you for all of your diligent17effort and work and keep it up.18CHAIRMAN WINOKUR: Thank you, Mr.19Dunning.20Larry Felton. Mr. Felton. Mr.21Felton is not present.	12	frequency and that's important in the	
15 wanted to make sure you guys were aware of. 16 Again, thank you for all of your diligent 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present.	13	analysis.	
 Again, thank you for all of your diligent effort and work and keep it up. CHAIRMAN WINOKUR: Thank you, Mr. Dunning. Larry Felton. Mr. Felton. Mr. Felton is not present. 	14	Those are the principal ones I just	
 17 effort and work and keep it up. 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present. 	15	wanted to make sure you guys were aware of.	
 18 CHAIRMAN WINOKUR: Thank you, Mr. 19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present. 	16	Again, thank you for all of your diligent	
19 Dunning. 20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present.	17	effort and work and keep it up.	
20 Larry Felton. Mr. Felton. Mr. 21 Felton is not present.	18	CHAIRMAN WINOKUR: Thank you, Mr.	
21 Felton is not present.	19	Dunning.	
	20	Larry Felton. Mr. Felton. Mr.	
22 That concludes the public comment	21	Felton is not present.	
	22	That concludes the public comment	

228

	Page 229
1	portion of this hearing. I would now like to
2	turn to the Board members to see if they have
3	any closing comments.
4	MEMBER BROWN: No.
5	VICE CHAIR ROBERSON: No.
б	MEMBER MANSFIELD: No.
7	MEMBER BADER: No.
8	CHAIRMAN WINOKUR: I'm going to
9	provide some very general closing comments and
10	then I will close the meeting.
11	This public meeting and hearing
12	dealt with public health and worker safety for
13	the waste treatment plant at Hanford which is
14	DOE's solution to cleaning up the toxic and
15	radioactive waste in Hanford's tank farms.
16	The first session looked at the
17	adequacy of pulse jet mixer vessels and
18	implications for the waste acceptance
19	criteria, the Board's safety concerns or
20	criticality, hydrogen gas buildup, and PJM
21	mixer overblows. The Board was pleased the
22	Department has committed to accelerate large-

	Page 230
1	scale testing of pulse jet mixer vessels
2	beginning in 2012.
3	The Board also believes a hot pilot
4	plan during plant operation also has high
5	value.
б	During the second session on pre-
7	treatment facility safety. The Board explored
8	issues of complexity that drove a revised
9	hydrogen strategy and its implications on the
10	safety basis. The Board has always been
11	supportive of more reduction but has concerns
12	about severity level calculations dealing with
13	sprays and leaks and deposition velocity.
14	The Board is concerned that the
15	Department has chosen not to adopt a
16	deposition velocity of 0.1 to 0.3 that the
17	Department agrees is technically justified.
18	The Board is concerned that the requirements
19	on the tank farms to control, characterize,
20	and deliver waste to the waste treatment plant
21	will become increasingly complex if the waste
22	treatment plant is required to tighten its

waste acceptance criteria as it finalizes its design.

1

2

21

22

Today's final session of this public meeting and hearing explored the Department's hydrogen strategy for pipes and auxiliary vessels that employs a quantitative risk assessment methodology.

8 The Board is concerned that the ORA 9 methodology may reduce the plant's margin of safety resulting from breaches in the primary 10 confinement boundary in the hot cells which 11 12 may require repairs that delay operations and expose workers to hazardous situations. 13 The Board would like to thank all of the witnesses 14 15 from the Department of Energy, its contractor 16 organizations, and its technical experts who 17 testified during these two days of public 18 meetings and hearings. 19 I want to personally once again 20 thank Dr. Triay. I want to thank all the

folks at DOE and their team. I thought this

was an excellent information exchange.

Neal R. Gross & Co., Inc. 202-234-4433

Page 231

		Page 232
1	Obviously it's a very extensive record to	
2	review and I appreciate you all being here.	
3	With that I am going to close this	
4	public meeting. The record of this meeting	
5	will be open until November 7, 2010. Thank	
6	you for coming.	
7	(Whereupon, at 12:05 p.m. the	
8	hearing and meeting were adjourned.)	
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
	Nool P. Grogg & Co. Ing	

			l	
A	accommodate 86:4	ad 172:12	adjourn 7:14	Alamos 181:13
abandoned 12:17	87:16	adapting 178:18	adjourned 232:8	algebra 186:12
Abelian 186:12	accommodated	add 25:7 95:12	Adjournment 3:22	Allen 224:15
ability 16:15 17:14	14:19	145:9 148:8	adjunct 147:5	allotted 53:4
26:12 55:5 117:11	accomplish 51:15	149:18 205:20	adjust 104:2	allow 28:14 31:7
156:3,4,4	209:6	208:18	adopt 42:2 230:15	43:5 80:5 85:17
able 18:22 28:22	accomplishments	added 45:12	adopted 43:18	86:16,18 87:6,19
59:13 81:16 111:9	174:1	119:18 140:19	advance 61:4	87:22 88:6,7
116:10 180:20	account 58:4 69:13	adding 142:17	114:11	104:4 109:20
181:18 182:18	69:19 115:9	additional 7:2 11:7	advanced 109:6	129:7 142:18
183:7 192:4 213:1	accountable 220:1	25:7 26:15 51:12	168:17	179:20 180:4
absence 158:2	accounted 72:20	52:21 53:2 62:14	advancing 26:19	209:1
absolute 187:20	73:18,21 74:2,3	81:10 117:16,18	adverse 26:16	allowable 104:10
absolutely 76:18	accounting 58:2	117:20 129:9	adversely 26:11	104:21
95:19 115:22	accumulate 18:1	134:22 140:21	advice 13:3	allowed 43:2 49:3
205:7	22:3,7 133:22	146:2 165:17	adviser 148:5	87:2 141:22
academia 13:4	accumulation 42:5	188:14 199:3	advising 12:18	allowing 42:14
18:19 82:3	141:9,11	202:9 203:1 204:2	Advisory 219:16	44:20 50:17
academic 82:19	accurate 75:17	204:3 215:10	Aeronautics 54:17	166:13
112:22	80:3,12 81:7	additive 25:5	affect 26:11 34:20	allows 63:21 79:21
Academy 169:15	155:16,17	address 31:21	58:14 87:21	87:17 105:4
accelerate 229:22	accurately 79:21	46:14 51:19 94:13	143:10 204:4	118:17 166:15
accelerates 191:22	achieve 108:13	99:1 110:20,22	affectionately	allutory 160:9
accelerating 185:4	220:5	118:8,18 119:5	188:6	Alpha 85:1
accept 43:4 126:19	achieved 208:7	124:13 136:15	afraid 217:7	alternative 17:9
acceptable 29:7	acknowledge 53:2	161:17 195:21	age 220:2	24:17 44:7,9
41:9 46:6 79:18	142:3	198:12	agencies 10:2	Altovich 170:16
101:15 103:20	acknowledges	addressed 23:9	aggressive 51:4	amended 7:17
159:13 216:9,13	106:17	32:13 52:14 83:10	ago 98:22 107:14	AMERICA 1:1
216:15	act 5:6 7:16 8:2 9:1	90:7 122:9 161:16	128:19 154:14	American 27:3
acceptance 17:8	10:3 214:7	179:1 201:2	159:18 204:22	85:13
26:8 29:17 42:8	action 8:22 41:4	203:10,13 207:12	226:5	amount 38:3 57:7
60:5,10,18,21	119:4 166:22	208:2 218:20	agree 81:7 92:15	59:4 76:3 79:22
61:6 100:4,8	actions 14:3 46:20	addresses 51:22	160:9 168:1 169:3	87:6 123:17
102:1,7,9 151:12	46:22 51:8 181:8	addressing 32:7	213:22	amounts 38:11
153:1,7 182:12	215:21 220:11	118:1,15,18 136:2	agreed 113:7	79:16 131:7
195:1 229:18	active 22:1,21	170:10 185:11	189:22 190:6	Anacortis 227:12
231:1	23:11 24:21 25:1	186:7 209:13	199:14	analogous 91:4
accepted 32:16	25:12,14 26:5	adequacy 229:17	agreement 24:5	analyses 125:2,8
128:15 184:17	49:5 85:9 97:7,16	adequate 8:12,20	217:13	187:3 203:17
186:2	136:6	40:19 77:22 79:10	agrees 230:17	analysis 3:9 26:20
access 147:15,16	actively 18:14	81:5 218:7	Ah 83:6	27:1,22 28:10
accident 11:4 41:16	119:19	adequately 16:16	ahead 58:22 77:15	31:3,16 34:4,20
84:18 164:9	activities 147:8	30:16 52:13,20	104:5 184:1	35:2,3,9 41:16
accidental 139:14	activity 84:13	53:5 72:7 200:7	AIChE 85:13	43:9 50:5 60:12
accidents 10:20	157:1,2,16	216:18	aircraft 136:22	60:15 76:1 80:14
84:19	actual 65:16 90:5	adiabatic 140:5	Alabama 58:1	80:15 81:6 98:11

				Page 23-
105:16 113:15,19	Appendix 144:14	23:10,20 26:4	173:6 174:19	associated 5:15
118:17,21 122:13	178:7	42:22 43:8 46:13	175:13 176:6,16	40:5 94:14 100:16
124:15 136:2	applicability 33:3	155:8	176:19 177:17	102:5 156:8 157:3
141:9,18 143:13	applicable 28:20	April 23:7 43:19	178:9 179:17	assume 80:21
144:4,5 145:12	50:16 78:20 178:4	45:9 46:2	180:17 181:11	101:21 133:7,11
149:22 164:9	178:5,8	arcane 191:14	182:11 187:16	133:21 138:18
173:14,16 174:20	application 27:1	area 99:9 193:5	188:3 189:12,15	195:6,10,11
175:17 186:1	30:19 44:16	201:1 211:3	190:12 193:19	211:12
	199:20 201:7		190.12 195.19	assumed 57:18
188:6,17 190:14		areas 16:10,14 85:5	,	
192:7,18 200:9	applications 31:1	148:12,13 156:1	196:7,11 197:10	58:8 196:8
201:18 202:4,16	32:20 85:17	168:6 196:3	201:8,14 202:20	assumes 135:4
228:13	applied 60:20	argument 163:1	203:6,20 209:12	assuming 33:20
analyst 109:12	78:14 81:4 85:7	167:14	211:4,16	81:5 97:9
analysts 144:2	95:8	arm's 120:12	aside 72:9	assumption 135:16
analytical 27:20	applies 43:12	art 114:12 184:13	asked 19:1 58:11	assumptions 30:16
109:20 110:8	apply 150:15	article 128:19	59:3 61:20 95:14	41:15 49:16,19,21
111:4 113:18	applying 162:18	artifacts 89:7	95:15 118:2	50:13 143:6
149:7	appreciate 19:16	Ashley 1:22 54:10	140:16 152:12	144:12 145:17
analyze 28:3	32:2 35:18 127:10	55:13,17 56:18	157:22 163:14	146:2,5,7 160:2
101:20 128:15	219:17 220:22	57:1,10,21 58:7	207:1 225:7	164:11 166:17
144:15	232:2	59:7,11,16,21	asking 78:13 92:10	167:2 200:8
analyzing 76:5	appreciated 142:14	60:13 61:12,17	140:16 178:12,16	202:10
101:13	225:8,11	62:5,8,11,19,22	178:19 180:8,15	assurance 32:19
ancillary 3:4,6	approach 18:15	64:6,11,16 65:1	ASME 27:3 127:17	45:12 54:13 78:16
40:22 45:10 58:20	24:6 25:12,21	66:4 67:11,15	128:22 129:3	120:10,14 162:15
and-a-half 227:6	28:16 29:6,22	68:10 69:21 72:21	aspect 48:9 50:5	218:4
answer 16:4 53:15	41:2,17 42:3 43:8	74:4,10,20 75:2	97:4	assure 23:2 99:14
55:3,6 79:12	43:15,18 45:20,20	93:11 94:3 97:14	aspects 17:13 36:16	103:6 110:8
172:4 176:13	46:5,8,13 48:1	97:20 98:3 99:21	48:3 82:7,14	208:22 218:5
190:17 200:18	49:14 76:1,5	100:13 101:16	88:20	222:8
223:21	79:21 94:2,5,8	102:9,16,18	assess 92:1	assures 95:4 100:9
answers 15:12,13	97:4,9 104:19	103:10,16 104:1	assessability 91:7	assuring 19:18
15:19 154:13	122:21 179:8	104:15 105:3,14	assessable 91:9	142:9
206:2 209:4	199:14	107:3 108:3,9,15	assessed 23:16	asymmetry 173:1,2
anticipate 96:4	approaches 31:6	110:18 111:22	assessing 31:9	173:3,6,8
112:16	approaching	117:4,7,10 119:9	83:20	as-built 180:11
anticipated 75:16	124:19	132:22 133:6,17	assessment 23:21	as-we-go 14:20
79:17 98:5	appropriate 7:9	134:6 140:13	34:6 41:1 155:21	ATEC 139:17
Antonio 27:8	29:20 35:8 78:18	141:1 142:21	156:10 184:13	atmosphere 218:14
anybody 194:18	80:9 103:14	143:2 145:8	231:7	atmospheric 33:15
198:11 227:16	214:12 223:17	149:20 151:7,9	assessments 156:8	Atomic 7:16 8:1
anyone's 177:21	appropriately 15:7	152:4,14,21 153:6	215:21 220:12	10:3
anyway 190:10	32:13 80:18	153:19,22 154:7	assigned 182:3	attempted 48:13
apologies 224:15	approval 143:4	154:15,20 158:9	214:6	attempting 168:18
apparent 71:12	208:19 217:12	159:1,7 160:18	assigning 217:18	attention 92:20
apparently 175:3	approve 44:7 217:8	162:6,9 163:3,10	Assistant 19:12	93:2 168:11 212:9
appear 53:4	approved 22:18	165:13 168:2	20:6 54:2 205:14	attest 207:13
	1	1	1	1

	1		1	
audience 75:1	38:1 122:18	175:19 176:1	140:6 141:1 142:2	Blending 70:6
207:13	backing 124:12	179:11 199:15,16	142:6 143:8 151:2	BNI 1:22 2:14
auditorium 6:7	Bader 1:15 4:13	201:10,13 202:12	160:14 161:3	23:15 24:7 29:13
August 16:6 30:6	74:16,18,20 90:16	205:3,22 206:7	168:2,12 172:2	40:11 44:16 45:9
author 179:18	90:17 91:6,15,21	208:19 230:10	182:13 183:6,15	45:19 46:6,11
authority 7:16,19	92:10,21 93:4	batch 59:9,19 60:1	184:5 186:5 187:4	47:4,4,18 48:17
35:14 120:13	138:1,10 140:12	60:2,3 61:1 68:12	187:9 193:13	50:19 51:3 52:19
183:19 184:1,5,9	140:13 142:13,22	68:13 69:12 72:6	199:13 200:14,18	53:2,3 93:21
186:6	144:9,17 145:2,7	72:19 73:5	207:19 208:6	135:17 149:4
authorization	145:8 197:22	batches 69:9 73:22	211:4 212:6	BNI's 46:17,22
156:16 208:19	198:1 199:2,10,22	153:17 195:7	214:11,14 219:22	48:22 75:9 79:20
authors 181:14	200:3,6,11,14,22	BDOT 178:3	220:1 223:14,20	155:8
auxiliary 231:5	202:13 203:4,7	Beach 138:22	believes 37:21	board 1:3,10,15,16
availability 25:10	204:6,15 205:5	beam 87:14,15	40:18 43:14 50:8	1:17 3:2 4:5,9,14
41:21 175:4	206:1,9 208:15	bear 181:19	51:7,13 52:12	6:6 7:7,11 8:5,11
available 5:11,13	209:2 223:12	beauties 118:16	230:3	8:15,19,22 9:12
5:16 15:13 27:19	229:7	166:12	benchmark 27:19	10:18 11:2 12:18
117:20 165:21	balance 29:19	beautiful 89:16	bend 109:2 114:4	13:18 14:11 15:12
avenue 94:1	97:22	Bechtel 19:3 23:15	174:8	16:3,5,12 19:8
average 72:16	barely 212:11	54:8,10 113:9	bending 179:7	24:4 25:4 30:12
avoid 132:20	barrier 97:8,8	115:16 150:7	bendings 87:14	30:21 32:2,10,17
avoided 132:18	base 82:13 157:12	175:3 207:5,18	bends 116:5 173:1	35:15,21 36:4,16
awaited 197:2	based 33:1,19 43:9	216:21 217:14,21	bent 87:15	37:21 40:12,15,18
aware 180:13	57:18 60:15 61:5	218:4	Berger 107:13	41:10 42:11,16
228:15	63:18 77:21 104:3	began 11:9 12:16	best 23:22 29:11,15	43:20,21 53:9,15
awful 213:5	133:17 153:16	15:10,18 24:7	55:4 71:2 94:19	53:18 55:2 57:14
axes 111:6	154:13 172:20	39:22 108:18	95:1,20,21 160:10	65:21 81:13 93:15
axial 197:2,4	188:17	beginning 6:12 8:2	169:3 187:12	105:12 121:17
Azzaro 1:19 4:16	basic 143:6 164:2	168:5 181:16	220:5	123:2 181:4
A-10 191:7	183:22	207:1 230:2	better 73:13 94:1	183:19,21 184:1,6
A-3 187:17	basically 70:11	begins 8:8	137:7 196:13	184:10 186:6
A-4 189:8	89:10 90:1 95:16	begun 9:5	beyond 49:3	187:5 200:20
A-5 189:4	110:16 114:21	behalf 224:19	big 122:5,10,12	206:14 214:20
a.m 4:2 146:12,14	129:8 136:14	behavior 23:20	124:12 126:7	219:16 223:22
	149:21 173:16	52:11 63:7,8	bigger 222:16	225:4 229:2,21
<u> </u>	basis 12:20 33:7	71:16,18	binding 217:13	230:3,7,10,14,18
back 59:2 106:20	37:5 41:11 48:6	behooves 140:6	bit 38:1 69:6	231:8,14
124:3 127:12	49:12,15,19,21	believable 221:18	122:18 124:4,13	boards 123:3
132:8 138:3,12	50:2,7,14 52:16	believe 52:18 53:10	168:16 172:1	Board's 3:4 4:15,17
141:3 142:17	53:11 55:15 57:7	73:15 76:15 77:22	175:14 183:17	5:9,11,17,18,20
143:1 144:2 145:4	57:8,10 62:13	78:17 79:18,20	191:14 193:3	7:19,21 8:4 9:6,19
152:11 173:14	87:21 88:1,9	80:8,13,17,22	212:18	10:1 12:15 15:6
175:19 178:11	125:7 144:13	91:15 92:4,11	bits 82:4	15:14 17:10 36:8
182:21 203:5	146:7 156:16	93:1 94:4,17 95:3	bitumen 96:18	36:14 37:3 40:14
205:3 207:2,22	157:19 161:4	95:7 103:13	black 14:15 43:6	97:2 154:13
224:6 226:4	163:5,17 167:19	130:22 135:22	91:5 102:16,18	229:19
background 11:7	170:15 175:18,18	137:17 138:4	blended 153:17	boiler 127:17 129:1
	, -			
	I	I	1	1

Bolt 224:15	broken 217:3	bursting 37:19	called 87:7 162:4,6	causes 210:19
bonds 38:10	Brookhaven	Busche 1:23 54:14	226:6	caveat 163:20
book 76:17 175:11	161:22	97:1,2,12 144:10	candidates 184:21	cell 43:2,17 44:22
bottom 70:17 189:8	brought 148:4,15	144:14,19 145:6	capability 17:9	91:12 102:10,14
216:19	Brown 1:16 4:11	163:11,18 190:13	45:3 180:11	102:15,16,18,19
Boulevard 1:12	90:14 105:9	190:17 194:20	capacity 141:5,14	191:9 192:22
bound 116:22	106:21,22 107:9	199:11,17 200:2,5	158:12	210:1 211:6,11
171:4	108:11 110:13	200:10,13,20	captured 64:5	cells 14:16 43:7
boundaries 22:14	111:14 112:19	202:8 204:8,14,18	car 107:16	91:5,5,7,8 209:7
23:5 110:16	117:3,8 119:8	205:4 206:3,8	carbon 96:17	211:8,8 231:11
boundary 18:5	120:2,19 121:4,15	208:19	130:14	Center 1:11 85:11
26:1 42:16 43:5	121:22 124:7	Busche's 203:17	cards 74:6	centimeter 33:12
44:3 48:15 78:3	127:9 129:15,21	business 169:7	care 132:16 151:7	33:20
95:5 99:15 103:7	130:2 131:13	button 136:5	165:11	centipoises 67:20
103:8 142:12	132:4,8,21 133:13	buzz 82:18	career 21:6 94:12	67:22
155:13 231:11	134:3 135:6,13	B31 178:13	careful 87:1 90:3,9	central 176:5 177:7
bounded 172:16	138:3,12 146:18	B31.3 29:18	93:2 212:8 227:19	certain 87:2 158:16
bounding 80:16,19	146:20 148:4,19		carefully 55:2 88:1	184:17 200:8
110:14	148:22 149:3,10	<u> </u>	89:4	certainly 92:14,19
box 125:18	149:19 150:4	C 174:17	Carlo 197:13	141:3 154:16
boy 121:21	151:5 152:3,8	Cal 108:4,18 147:9	carrying 9:3	178:8 188:4
breach 18:5 209:7	229:4	calculate 43:10	Cascadia 226:21	certainty 220:13
breached 23:5	Brunsbuttel 130:3	113:19 116:22	case 10:6,17 41:18	certification 153:3
breaches 231:10	130:15 134:15	167:20 173:2	41:18,20 42:14	153:10
breaching 42:15	bubble 52:15,20	calculated 84:4	78:2 85:22 100:19	CFR 35:16
break 138:2,11	58:13 61:14,17	103:18 171:5,13	105:4 123:11	Chair 1:15 7:1
144:10 146:10	62:3,3 63:15,19	187:19 200:11	125:14 126:15	55:11 56:11,21
154:18	63:22 66:14	226:8	128:2 129:16,17	57:6,17,22 58:22
breaking 38:9	118:12,13,20	calculating 174:2	131:9,21 132:13	61:9,13 62:5,9,12
116:11	133:21 188:8	calculation 150:13	132:18 159:22	62:20 64:2,10,15
bridges 167:9	195:22 196:8,10	153:15 158:3,3	162:21 165:6	64:18 65:18 67:5
227:8	196:15,20	190:9	178:10 181:7,15	67:12 68:7,21
brief 138:2,11	bubbles 61:18	calculations 29:16	181:18 207:14	74:8 75:4,8 76:7
briefed 147:8	66:22 68:5,5	34:19 47:16 50:20	cases 18:4,14 49:2	76:18 77:6,12
briefing 161:3	81:18 118:4	50:22 52:9,15	78:21 110:14	78:8,13 79:6,19
briefly 130:3	build 37:18 217:18	75:9 76:13,14	131:4,5 167:19	80:20 81:3,9
bring 83:16 181:18	218:1 219:2	79:8 80:17 149:7	178:2	88:11,14 90:12
219:17 222:1,11	building 41:22	160:3,17 167:17	catalytic 136:6	93:7,11 95:10
brings 220:8	167:20 225:15	174:21 197:13	140:3	97:1,13,21 99:18
broad 76:8 169:4	buildup 229:20	201:19 230:12	catastrophic	100:10 101:6
broadcast 5:7	built 167:12 184:4	California 27:5	209:15	179:15 181:1,21
broader 93:17	bulge 43:3	54:18 107:10,19	caught 197:17	214:21 219:14
169:20	bulging 106:5,11	call 6:10 70:4 74:22	cause 26:6 45:5	224:18 229:5
broadly 78:19	bunch 120:20	84:1 92:5 98:5,12	58:12 103:21	Chairman 1:12,14
Brockman 1:22	134:9 153:16	107:4,17,19,20	118:3 158:15	3:2 4:3,4 32:1
54:4 208:17	burden 159:19	112:4 118:6 139:3	195:22 210:19	34:7,12,16 35:12
214:14	bureaucratic 129:4	215:5	228:10	35:17 36:4 53:16

50 1 0 10 17 (0 0	, , ,	104 10 105 6		22.2.1.0.11
59:1,8,12,17 60:8	characterize	124:13 125:6	combine 92:2	33:2 160:11
69:1 71:20 73:19	230:19	150:14,22 181:4	111:1,5,7 117:19	168:14 218:10
74:18 76:19 81:11	CHARBONEAU	192:4 199:21	126:17 127:8	commissioned
84:2 85:16 86:17	1:23	climbing 91:19	combined 28:18	14:12
88:4,10 90:14	charge 9:7 10:7	close 158:7 198:21	126:19 150:13	commissioning
93:6,9,10 101:7	charter 10:1	199:8 217:15	combining 52:3	13:21 14:19 15:2
105:7 106:19	185:17	229:10 232:3	combustible 188:9	157:1,4 213:6
121:4 137:21	chartered 45:9	closed 31:19 221:9	191:17	214:9
138:8 140:12	chemical 11:14	221:10,11	combustion 52:2	commitment 20:20
146:8,15,21	13:4 38:9 84:8,10	closely 4:19 112:3	come 64:9 83:22	207:10
148:19 149:2	85:4,10,12,14	185:9 205:13	92:8 106:20	committed 30:11
152:5,7 154:17	90:18 91:10 96:2	208:22 214:15	113:10 115:19	53:7 127:4 151:2
179:13 181:22	96:5 164:21	closing 31:2 47:1	128:15 183:16	189:18 229:22
197:19,20 206:10	192:20 224:20	225:14 229:3,9	193:16 204:9	Committee 219:15
206:11 209:3	chemicals 38:4	closure 46:13,17	comes 60:4 70:8	common 191:8
210:22 211:12,20	chemistry 11:17	47:2 62:15 65:21	73:5 85:13 88:3	communicate
212:10 213:16,20	Chickarelli 147:19	119:6 182:4 217:9	158:22 159:1	46:21 183:12
214:19,22 219:5	Chief 20:9 32:8	coastline 226:22	170:16 185:11	communicating
223:2,7,13,19	chosen 55:2 230:15	code 27:3 29:18	201:2 202:16	67:6
224:4,8,10 228:18	circumstances 18:1	32:15 33:19 35:16	comfortable	communities 169:6
229:8	citizens 225:12	44:6 87:3,17	163:18	community 82:19
challenge 3:12,15	clarification 56:10	100:15,16 102:20	coming 59:5,9,18	85:3 169:14
145:5 215:16	206:12 226:4	104:20,21 115:16	67:13,16 196:22	company 138:15
216:6 219:14	clarify 56:3 64:12	125:6 126:7,21	227:16 232:6	165:10
	e e	·		
221:11	64:16 194:2 203:1	128:2,3,12 129:16	Commandments	comparable 228:8
221:11 challenged 33:11	64:16 194:2 203:1 219:18	128:2,3,12 129:16 129:17 158:17	Commandments 126:6	comparable 228:8 comparative
221:11 challenged 33:11 challenges 83:16	64:16 194:2 203:1 219:18 clarifying 222:12	128:2,3,12 129:16 129:17 158:17 159:16 167:19	Commandments 126:6 comment 112:20	comparable 228:8 comparative 175:19
221:11 challenged 33:11 challenges 83:16 202:18	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16	Commandments 126:6 comment 112:20 125:20 142:14	comparable 228:8 comparative 175:19 compare 91:7
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12	comparable 228:8 comparative 175:19 compare 91:7 159:13
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19	<pre>comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7</pre>
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7 31:15 163:20	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4 121:22 123:14	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16 collected 153:3	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8 198:16 207:6	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2 150:7 162:13
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7 31:15 163:20 172:18 199:1	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4 121:22 123:14 150:2,11 170:13	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16 collected 153:3 collection 126:8	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8 198:16 207:6 215:10,15,19	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2 150:7 162:13 201:10,16,18
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7 31:15 163:20 172:18 199:1 202:21 228:11	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4 121:22 123:14 150:2,11 170:13 170:18 187:6	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16 collected 153:3 collection 126:8 152:22	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8 198:16 207:6 215:10,15,19 219:6,10 223:11	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2 150:7 162:13 201:10,16,18 202:1,21 205:15
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7 31:15 163:20 172:18 199:1 202:21 228:11 changing 220:4	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4 121:22 123:14 150:2,11 170:13 170:18 187:6 188:8 193:9	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16 collected 153:3 collection 126:8 152:22 collects 152:19	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8 198:16 207:6 215:10,15,19 219:6,10 223:11 229:3,9	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2 150:7 162:13 201:10,16,18 202:1,21 205:15 212:14,16 220:6
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7 31:15 163:20 172:18 199:1 202:21 228:11 changing 220:4 characteristic	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4 121:22 123:14 150:2,11 170:13 170:18 187:6 188:8 193:9 202:13 203:8	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16 collected 153:3 collection 126:8 152:22 collects 152:19 combination 29:14	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8 198:16 207:6 215:10,15,19 219:6,10 223:11 229:3,9 commercial 86:8	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2 150:7 162:13 201:10,16,18 202:1,21 205:15 212:14,16 220:6 completed 26:21
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7 31:15 163:20 172:18 199:1 202:21 228:11 changing 220:4 characteristic 58:15 192:20	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4 121:22 123:14 150:2,11 170:13 170:18 187:6 188:8 193:9 202:13 203:8 213:12 221:12	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16 collected 153:3 collection 126:8 152:22 collects 152:19 combination 29:14 58:9 86:7 94:5	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8 198:16 207:6 215:10,15,19 219:6,10 223:11 229:3,9 commercial 86:8 142:7 144:3 166:5	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2 150:7 162:13 201:10,16,18 202:1,21 205:15 212:14,16 220:6 completed 26:21 31:9 36:13 45:19
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7 31:15 163:20 172:18 199:1 202:21 228:11 changing 220:4 characteristic 58:15 192:20 Characterization	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4 121:22 123:14 150:2,11 170:13 170:18 187:6 188:8 193:9 202:13 203:8 213:12 221:12 clearing 69:9	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16 collected 153:3 collection 126:8 152:22 collects 152:19 combination 29:14 58:9 86:7 94:5 combinations	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8 198:16 207:6 215:10,15,19 219:6,10 223:11 229:3,9 commercial 86:8 142:7 144:3 166:5 187:2	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2 150:7 162:13 201:10,16,18 202:1,21 205:15 212:14,16 220:6 completed 26:21 31:9 36:13 45:19 47:5,9,13 48:1,4
221:11 challenged 33:11 challenges 83:16 202:18 challenging 11:16 70:4 82:16 83:3 champion 184:14 185:4 change 5:2 25:6 66:6,13 72:22 73:2 97:4 172:4,7 188:16 195:22 203:22 changed 176:17 changes 14:15 31:7 31:15 163:20 172:18 199:1 202:21 228:11 changing 220:4 characteristic 58:15 192:20	64:16 194:2 203:1 219:18 clarifying 222:12 class 144:5 191:5 192:18 classical 192:12 clays 63:18 clean 211:14 cleaning 229:14 cleanup 11:20 211:1,10 215:18 217:14 220:6,7 221:19 clear 50:15 51:5 63:14,16 87:4 121:22 123:14 150:2,11 170:13 170:18 187:6 188:8 193:9 202:13 203:8 213:12 221:12	128:2,3,12 129:16 129:17 158:17 159:16 167:19 178:2,3,10,12,16 178:17,18,19,20 179:1,4,6 181:7 181:15,17 codes 115:11 126:5 127:18 167:16 cognizant 157:19 coking 96:17 collapse 149:5,15 227:10 colleagues 4:9 20:12 21:1 77:16 collected 153:3 collection 126:8 152:22 collects 152:19 combination 29:14 58:9 86:7 94:5	Commandments 126:6 comment 112:20 125:20 142:14 151:8 165:12 168:15 188:13 208:16 225:14 228:22 commenting 122:19 comments 5:22 7:2 7:5 121:17 122:2 122:12,21 123:4 123:15,21 124:6 148:2,12,17 149:8 198:16 207:6 215:10,15,19 219:6,10 223:11 229:3,9 commercial 86:8 142:7 144:3 166:5	comparable 228:8 comparative 175:19 compare 91:7 159:13 compared 43:17 48:21 60:19 131:1 158:6 comparison 131:2 131:12 135:7 comparisons 90:18 competent 179:2 complete 13:13,14 13:16 15:19 30:14 47:21 50:20 95:2 150:7 162:13 201:10,16,18 202:1,21 205:15 212:14,16 220:6 completed 26:21 31:9 36:13 45:19

	1		1	1
201:10	137:13 143:11	conclusion 6:2	209:15,16	67:9 95:7 164:8
completely 73:9	149:6 151:14,19	conclusions 185:18	consequently 10:17	175:7 186:2
178:6 213:22	165:21 166:2,10	condensers 133:19	59:12	constant 171:18
completes 53:13	202:6 209:18	Condi 107:19	conservation	constants 171:9,10
completing 118:10	210:3,3,18	condition 134:1,15	173:19	171:13
127:3 201:21	composition 57:18	134:17 179:1	conservatism 42:6	constitute 4:13
202:5	compounds 39:13	200:17	64:21 65:1,12,15	25:2
completion 9:20	compression 228:1	conditions 22:4	73:16 92:5,9,12	constraints 50:1
25:17 162:11	compressive 39:16	28:8,14 33:5 56:1	140:22 141:2,13	construct 19:19
complex 10:8 20:14	137:15	94:13 133:8,10	142:18	163:19 171:4
20:18 24:9 33:1	comprising 6:3	210:17	conservative 29:16	constructed 11:11
43:15 83:13 84:15	computed 29:12	Condoleezza	31:5 32:22 33:22	constructing 171:3
94:9 105:15 109:7	computer 76:2	107:12	34:5,22 35:9 40:8	construction 8:5,8
116:2 126:4,14	conceive 163:16	conduct 53:5	40:12,17 43:16	8:14,16,19 9:3,20
142:19 144:12,18	concentrate 17:12	conducted 27:5	45:16 60:14 61:5	10:8,19 13:14,20
150:16 155:14,19	68:15 concentration 22:7	45:18 62:6 75:9 75:15	61:15,19 62:1,4	13:21 36:12 156:22 160:7
156:13 167:16 177:15 184:4	38:5 57:19 63:9	confidence 29:6	64:20 118:14 129:6 136:13	218:3 219:12
187:3 190:21	66:12,16 73:3,6	95:4 111:10	129:0 130:13	consult 211:18
191:1 192:13	concentrations	118:13 142:8	155:2 166:17	Consultant 1:24
230:21	22:2	183:6 221:4	167:2	consulting 54:19
complexity 41:5	concept 214:2	configuration	conservatively 74:3	consuming 45:5
143:16 156:7	concern 37:22 41:5	11:15	109:21 110:9	contacted 6:6,8
157:8 207:8	41:21 93:18 96:12	confinement 18:5	consider 46:11	contain 18:12
222:14 225:15	105:13 151:1	23:5 41:22 42:16	51:17 115:3 125:9	22:11
230:8	201:1 204:7	44:3 48:15 231:11	131:11 149:22	contained 33:7
compliance 27:3	208:18	confirming 65:11	167:12 185:3	containing 38:4,9
35:15	concerned 14:11	conformance	189:9	38:14 39:13 86:10
complicated 50:9	41:20 43:21 48:8	120:16,17	considerable 45:7	containment 128:5
81:14 93:12	80:15 230:14,18	confront 114:16	51:9,14	contains 21:18
comply 123:9	231:8	confronted 113:3	consideration 7:2	contamination
component 23:4	concerning 7:6	confused 125:21	97:17 133:18	25:19
24:9 26:1 28:13	concerns 12:19	confusion 219:19	considerations	content 72:22
78:2 125:15	16:12 17:12 24:15	222:14	219:3	context 135:12
151:10 152:1	37:14 47:11 49:8	Congress 40:15	considered 30:3	continually 157:10
182:6,9 203:2	75:11,21 88:16	42:10 43:20	40:12,20 41:9	continue 9:19
209:22	89:1 90:6 92:3	connected 79:7	61:18 79:15	35:20 107:1
components 14:5,8	148:15 207:11	Connecting 179:15	138:22 143:14	146:18 156:17,18
22:5 26:4,7,12	212:4 217:5,7	connection 89:22	173:4 184:20	157:8 216:5
27:19 29:21 36:21	218:16 229:19	90:1 172:1	216:9,11,15 218:9	continued 33:10
39:16 44:17 45:1	230:11	connector 106:5,7	considering 36:16	continues 25:12
45:21 46:6 47:16	concluded 5:12	connectors 24:11	131:3 135:1 192:7	133:22 140:15
55:16 77:20 78:6	29:4 34:3 46:4	105:12,21	201:9 217:3,17	continuing 9:6
78:9,15 79:3 91:1	217:10	consensus 158:18	considers 8:11,20	30:11
99:7 101:1,3	concludes 19:7	consequence 86:7	consisted 28:17	Contract 185:6
105:14,15 109:9	215:2 228:22	consequences 24:8	consistent 36:13	contracting 207:9
116:11 136:6	concluding 198:6	42:4 86:15 169:11	44:10 62:17 63:10	contractor 22:15

	I			
24:20 25:11 53:21	62:19 67:11 68:10	creation 42:13	daily 55:15	215:22
62:6 180:20	68:11 72:21 92:22	58:13	DALE 1:25	decision 98:2
217:18,20 231:15	95:19 97:12	creatures 116:16	damage 18:3	165:18 221:15
contractors 175:9	103:22 105:3,6	credible 136:8	165:11 209:22	decisions 98:4
183:14 215:3	108:16 127:21	CRESP 2:12	210:1,19,20	166:14,16 198:9
contractor's	134:5 144:14	criteria 14:4 17:8	dangerous 121:8	decommissioning
157:11	158:8 159:7 163:3	22:16,19 23:9	222:22	9:21
contractual 217:22	163:10 181:11	26:5,8 29:17 31:4	data 7:5 27:19 76:1	decreases 99:9
contrary 222:6	194:20 199:16	31:17 35:9 42:8	88:17,21 89:4	dedication 222:1
contribute 51:20	200:4,5,10,13,21	43:1,22 44:19	90:11 109:19,19	deemed 7:9
contributor 38:18	201:11 203:19	45:13 47:17 48:22	110:4,5,6,7	Deep 84:18
control 11:15 16:19	213:19 214:11	49:4 60:5,10,20	117:19,20 118:9	deeply 14:11
17:2 36:7,19 37:1	223:6	60:21 61:7 77:19	119:17 124:8	defamations 85:17
39:19,20 40:7	correction 64:21	77:22 78:14,16,18	125:22 147:15	default 220:19
41:2,9 49:5 59:22	correctly 40:3	81:4 95:7 97:5,6	152:19,22 172:16	defense 1:3 4:5,20
60:6,7 66:8 93:19	119:22	98:3,10,14 99:14	174:22 177:5,6	8:7 30:20 32:10
97:7,8,11,16	correlate 110:21,21	99:21 100:3,5,8	189:22 190:6	32:16 44:11 57:13
155:9 190:20	117:11 192:15	100:14 102:1,6,7	220:10	121:16 123:2
194:10 220:19	correlation 57:12	102:9 103:3 104:7	database 175:5,8	179:20 180:2
224:21 230:19	57:15,19,21 65:3	104:8,10,14 105:2	databases 176:4	defensible 45:16
controlled 96:20	65:4 171:12	105:4,17 111:9	177:6	defer 91:13 154:7
165:1	172:13 192:9	112:18 126:18	date 79:1	define 19:19
controlling 50:13	correlations 57:11	143:4,17,21 144:7	dated 40:15 42:10	defined 14:6 29:12
66:8 195:14	58:4 61:11 173:9	151:13 153:1,7	Dave 208:15	102:12
controls 17:1 22:22	correspondence	155:11 181:19	David 1:22,24 2:12	defines 8:3
23:12,14 24:21	207:3	182:12 195:1	54:4	defining 83:9 221:9
25:1,4,5,7,14 26:5	corrosion 38:20	201:14 229:19	day 121:14	definite 80:6
41:1 43:13 53:12	39:1	231:1	days 5:13 19:17	131:18
63:5 155:1 156:7	cost 86:10 93:19	criterion 40:17,18	144:3 166:5,21	definitions 29:15
156:8,11 187:4	217:1	201:22	231:17	deflagration 106:1
191:3	costly 14:16	critical 9:13 10:9	DDT 106:1	113:22 114:1
controversial 74:21	counsel 1:19 4:15	169:18 217:6	dead 114:5	125:16 132:2
Cont'd 2:10	186:11	criticality 92:19	deadlines 219:2	133:1,11 170:11
Convention 1:11	count 75:16	216:15,17 229:20	deal 21:14 68:19	170:20 178:7
converted 161:11	counterparts 9:18	crucial 15:2	95:17 137:5	179:21 180:4
convince 194:18	couple 34:9 81:10	cultivate 220:22	dealing 16:20	deflagrations 82:8
convinced 95:16	121:11 130:12 194:1 225:2 226:3	culture 217:4 cumulative 103:1	76:12 84:7 91:22	109:15 128:2
cookbook 160:1		cumulative 103:1 current 12:10	230:12	131:14
copying 5:16 core 73:22	course 7:13 132:12 144:11 159:16	49:12 98:4,18	dealt 229:12	deform 40:10 49:3 deformation 27:15
corner 77:1		,	Dean 107:5 death 29:2	
corner 77:1 cornerstone 21:6	174:10 cover 55:1	104:9 190:18 currently 61:14	death 29:2 decades 10:22	38:14 43:3,6 44:21 70:11 15 16
220:7	Craig 208:1	171:8 200:15	11:13 16:13	44:21 79:11,15,16 79:22 80:12 86:5
corporate 152:15	create 91:2	C-O-N-T-E-N-T-S	decide 85:20,20	86:16,18 87:2,5
Corporation 19:4	created 11:16 32:9	3:1	decided 42:20	87:13,16 88:5,8
correct 57:1 59:6,7	creating 22:10	J.1	158:16	90:21 103:21
59:11,16 62:8,11	68:16 83:22 146:4	D	deciding 92:7	104:4,17 105:5,10
57.11,10 02.0,11	00.10 0 <i>3.22</i> 140.4		ucciunig 12.1	107.7,17 103.3,10
				I

	1	1	1	
105:22 131:1,8	231:4	50:2,7,21 53:11	destroyed 96:9	142:20 150:18
158:19	depend 59:9	56:13 71:3 77:19	detail 65:10 82:2	169:8 179:21
deformations	171:14,19	77:19 78:16 81:4	122:5 123:18	180:4
54:20 101:13	dependence 171:17	83:2 85:22 94:4	183:18	detrimental 42:18
degraded 90:2	dependent 24:21	94:11,11,16,19	detailed 103:12	develop 48:20
degree 174:17	55:20,21,22 64:7	97:5,6 98:5 99:21	172:20 187:1	49:15,17 50:15
220:12	126:16 171:17	100:1,3,3,5,6,14	199:7	58:4 62:7 80:11
degrees 220:18	depending 38:3	101:5,17 103:5	details 28:5 75:22	93:16 109:20
delay 9:2 37:20,21	66:14 72:18 209:9	104:9,13,19 105:2	92:20 124:2	113:20 115:14
231:12	depleted 195:8	105:2 106:16	142:17 212:8	134:11 177:18
deliberate 129:6	deposition 32:4	112:11,18 113:7	detect 45:3	188:14
213:10	33:12,21 230:13	114:21,21 115:17	determination	developed 18:9
deliver 17:7 230:20	230:16	116:18 117:12	110:19 141:20	22:15 26:22 29:17
delivered 17:16	depth 122:3	120:9,12,13	164:11	32:15 40:11,17
59:14	Deputy 20:5 21:8	122:13 124:14,21	determinations	51:3 78:19 113:15
demand 51:14	205:14	125:7,7,13 135:4	160:3 164:19	173:8 179:6 181:6
141:5,7 158:11,15	describe 76:10	144:16,16 146:7	determine 24:14	193:15 211:5
demands 17:6	108:12 147:4	149:5 150:10,16	44:14 48:22 51:1	212:3
demonstrate 122:3	193:9	155:9 156:22	52:15 59:18 60:2	developing 80:9,18
demonstrated 48:2	described 93:13	168:17 180:6,14	60:9 61:21 65:5	110:7 116:11
demonstration	describes 46:17	184:3 188:22	97:6,16 101:2,4	127:6 129:6
105:18,18 109:8	128:4	189:19 190:19,22	144:20 164:12	151:12 179:3
183:3	description 170:10	191:5 194:4 198:9	180:10 200:9	201:12
denied 218:10	172:21	199:1,14,18,20	204:1	development 37:5
dense 69:10	descriptions	201:6,9,13,14	determined 49:5	48:5 178:15
denser 72:13 73:10	113:21	202:5,19,20,21	162:22 196:19	181:17,19 188:22
density 158:4,20	deserve 167:22	203:16,18,21,22	determining 52:16	201:16 206:20
159:6,20 160:4	218:12	204:4,5 205:2	128:16 142:19	213:3
161:11 164:7	design 3:7 8:4,6,11	212:13,15 213:17	deterministic 29:19	deviated 41:8
190:5 193:17	12:20 13:6,12,19	216:7,9 217:18	49:14 94:2 141:15	deviations 177:11
Department 4:20	14:3,4,7,15 15:1	218:2,21 219:3,11	141:22	devote 21:14
8:6 9:17 12:8,19	16:11 17:13 18:11	231:2	detonable 21:21	devoted 82:10
13:2,10,17,22	18:15 19:2 22:16	designed 11:11	133:14,15	139:17
14:2 15:3,16 20:3	22:20 23:18 25:1	35:8 86:12 209:18	detonation 81:19	DEWEY 101:8
20:9 21:1 22:18	25:6,15,20 26:4,9	209:19 211:9	82:11 114:1,2,3	102:8,15,17
23:7 24:19,22	27:18 28:2 29:8	214:1 222:21	114:17 115:5	103:12,22 104:7 104:18 105:6
30:4 33:17 36:22	29:20 30:1,5 31:4	designers 114:16 150:15	125:16 128:11 129:13 131:5,16	diameter 23:18
53:21 93:18,22 120:4 156:4,9	31:6,8,8,12,15,17 34:21 36:8,11,17	designing 94:20	129:13 131:5,16	26:2 192:19
120:4 156:4,9 157:6,16 184:2	36:18 37:5 39:22	101:19 127:18	167:22 168:20	diametrical 106:9
185:14,21 187:8	40:13,17,18 41:2	132:14	170:4,11,14,21	Dick 224:16
187:11 205:18	40.13,17,18 41.2 41:12 43:1,12,17	designs 24:10	174:3,8,15 192:1	Dickey 1:24 70:1
215:3 229:22	43:18,22 44:1,8	30:14	192:5,6	111:14
230:15,17 231:15	44:11 45:2,14,17	desire 96:4 204:10	detonations 22:17	die 220:2
Department's	45:19 46:5,13	desperate 83:17	27:16 54:20 82:8	diesel 165:17
18:18 19:4 20:18	47:5,6,8,17,21	92:1	84:6 109:16 113:5	166:11 167:10
21:12 32:18 93:16	48:14,15,22 49:21	Despite 222:19	115:19 127:20	diesels 166:4,8,9
21.12 52.10 75.10	10.11,10,22 77.21		110.17 127.20	440040 100, f,0,7
	I	I	I	I

1.66 04.01	104.16	100 10 100 10	40 0 40 10 54 5	100 00 101 1 14
difference 34:21	184:16	188:18 189:10	48:8 49:12 54:5	120:20 121:1,14
91:4	discharge 139:15	193:22 201:17	154:13 229:14	121:21 122:17
differences 74:1,5	disciplines 28:20	distributions 84:5	DOE-EM 1:25	124:11 127:21
130:12	83:17 92:1 168:7	145:17 155:17	DOE-ORP 1:22,23	129:17 130:1,10
different 66:20	discovered 185:1	163:4 175:16	1:25	131:17 132:6,12
67:1 69:18 71:4	discrete 181:8	176:2,4,8,9,21,22	dog-eared 77:1	134:14 135:15,19
71:17 78:6 82:21	discretionary	177:1,9,14,19	doing 60:14 69:7	137:22 138:9
82:22 83:21 91:3	46:10	188:15	80:14 81:21 83:8	139:7 140:14,17
101:10 111:6	discuss 19:18 36:19	division 186:21	89:10 92:3 97:22	142:15 146:22
113:22 114:15	69:4 79:14	DNFSB 121:16	113:16 115:16	147:1,7 148:8
126:9,15 130:8,11	discussed 15:21	122:7 221:7	116:14 127:4,13	149:9,11 150:2,5
134:10 144:22	41:3 68:8 69:6	222:11	136:12 141:8	151:5 152:9
151:15,17,17,18	200:7 207:18	document 46:19	143:12 149:12	157:22 158:10
153:17 171:1	212:8	60:1 122:19	160:16 169:2	160:22 168:7,12
228:10	discussing 31:22	168:13,21,22	183:4,18 192:13	168:15 169:13
difficult 50:10	186:20 208:11	documentation	197:15 226:1	170:2,9,13 172:8
51:10,15 82:15	discussion 3:5	33:20 148:16	dominantly 111:18	173:7,12 174:6,10
123:5 170:19	18:20 95:17 134:7	168:11 216:16	Dominion 108:5	174:13 175:14
223:8	135:12 137:10	documented 50:4	109:10 110:2,3	178:13 181:22
difficulty 140:2 169:16	140:14 148:9	52:7 62:17,21	113:16 206:19	183:15,16 185:8
	221:9	64:3,4 65:22 67:9	207:6,17	186:17 191:10,13
dig 138:18	discussions 16:8	119:4,5 163:5 documents 5:15	Dominion's 109:17	193:11 194:1,9,13
diligent 225:4 228:16	20:4 117:17		Donna 1:23 205:3,7 205:21	196:13 197:1,5,6
diluent 58:10,12	147:17,21 207:17 212:13 226:2	45:22 75:15,19 148:1 207:16	dose 34:1 35:10	197:20 198:4,14 199:5,6 205:6,10
diluting 195:18	disheartening	208:3	double 170:6,7	206:13,15,21
dimensional 109:1	222:4	Doe 15:3,11 16:6	double 170.0,7 doubt 220:20	208:8 211:22
192:17	dispersion 33:15	18:9 23:10 31:4	226:15	212:6 213:20,22
dimensionality	disposal 12:7 17:18	33:4 39:22 40:3	Dr 4:12 19:16 20:5	231:20
116:5	disrupt 25:8	40:11,16,21 41:7	27:6 28:22 32:6	draft 46:1 208:10
dimensions 87:10	disrupted 227:14	41:14,16 42:2,5	33:14 34:3 35:12	drafts 176:22
130:8 192:16	disruption 45:6	42:20,22 44:3,5	35:12,18,19 54:2	drawing 90:19
Dinex 179:9 181:3	dissolved 64:13	44:12,15 46:11,13	54:16 70:1 75:4,7	drive 140:15,20
directed 24:19 55:4	distance 191:9	47:4 48:13 49:10	75:14 76:12,21	144:15
123:15	192:1	49:22 50:11,15	77:8,18 78:4,9,17	driven 100:8
direction 119:16,20	Distill 83:6	51:3 53:3,7 54:6	79:12 80:1 81:2,8	124:22
140:15,21 177:8	distinct 38:6	54:19 76:9 78:22	81:22 84:8 85:19	driver 107:11
183:13	distinction 170:12	79:2 97:3 128:7	86:22 88:7,12,13	drives 100:3,5
directions 126:15	distinguish 78:5	147:11 160:12	88:19 90:17,22	135:21 189:1
directive 24:22	distribute 189:13	161:21,21 180:19	91:11,18 92:6,14	drove 230:8
directives 44:10	distributed 163:2	180:19 184:13	93:1,13 95:18	ductal 130:6
directly 204:19	173:4 189:20	185:4 197:4	106:15 107:3,4,7	ductile 78:1
Director 1:19 4:17	193:14 196:6	206:14 212:15	107:18 108:16,18	due 29:2 38:16,22
54:8,11	distribution 70:15	217:3,8,12,17	108:21 109:12	41:4 43:3 82:5
Director's 21:9	134:12 161:9	231:21	110:3,5 111:14	137:15 167:8
Dirk 3:19 224:18	163:7 164:6 167:4	DOE's 40:7 41:4,11	112:3,11,20,21	169:18 207:7
disappeared	177:4,12 188:12	43:14 44:10,20	118:7 119:12	210:19,20 218:10

Dunning 2:10	219:17 220:22	end-to-end 150:13	entertain 223:14	144:21 149:4
Dunning 3:19 224:16,17,18	219.17 220.22		entire 37:12 78:20	185:12 186:19
224.10,17,18	efforts 21:15 29:1	energetic 58:8,15	82:9 94:12 96:7	187:6
duration 37:13	31:10 139:20	energies 39:18 226:14	139:16 225:11	established 94:2
51:20 164:3 165:2			entirely 224:19	
	EG&G 175:2	energy 7:16 8:1,7	v	104:13 155:10
172:11	eight 37:3	9:2,13 10:3 15:3	entitled 146:13	156:2 158:17
dust 139:11	either 16:3 29:9	19:13 20:3,10	entrained 39:9	178:14 185:13
dwelling 84:20	74:22 149:17	53:21 54:3 120:5	56:14 57:8 64:13	199:21 201:15
Dwyer 1:19 4:17	158:16 169:12	156:9 157:6,16	entraining 56:22 entrainment 59:4	establishing 14:4
206:11,12,16	177:8	187:12 226:9		109:18
208:5,14	EL 139:18	231:15	entrance 6:6,14	estimate 23:22
dynamics 196:1	elastic 82:7 102:11	Energy's 4:20 12:8	envelope 17:4	29:11,15 55:13
D.C 5:19	102:12 114:19	36:22 156:4	environment 21:4	56:12 57:9,10
E	elbows 173:1	engaged 120:6	221:1	61:15 64:12,20
$\overline{\mathbf{E}}$ 1:17	electric 165:3	127:2 137:2	environmental	103:4 127:7
earlier 106:15	electrical 137:14	147:17,21	19:13 20:7 21:5	129:13 173:3
175:14 194:22	139:12,14 175:10	engine 138:20	54:3 151:20	estimated 130:6
215:7	Electronics 175:11	engineer 25:22	183:20 184:8	estimates 56:18
early 31:6 40:21	element 48:12	99:22 100:17	187:8 205:12	estimation 24:1
76:4 109:3	elements 22:21	112:14 124:18	224:21	65:6 124:10 126:2
earnest 12:16	29:20 47:7,12	126:13 144:5,6	EPC 160:6	ethylene 84:11
earthquake 227:5	108:6,7,10 167:5	179:2 224:20	epistemic 184:20	Europe 139:18
earthquakes	213:9	engineering 54:11	epistemically 173:5	European 85:3
227:22	elicitation 134:8	54:17 83:2 108:5	equal 6:21 23:17	evaluate 24:8 41:1
easily 90:20 143:18	135:2	109:10 113:9	123:19 188:10	42:3 55:19 100:22
-	eliminate 190:11	114:13 115:10	equally 168:1	102:20 103:1
easy 227:15 echo 225:13	email 121:9,10	144:1 160:6	equation 141:5	111:11 112:10
Ed 181:20	embedded 141:13	206:19 225:1	158:11,12	134:19 142:5
Edgerton 175:2	embodied 20:22	engineers 27:4 83:5	equations 75:22	150:17 159:11
effect 7:22 63:6	emerge 213:2	85:14 113:2	170:17	166:15
70:3 103:1 109:11	emergency 166:4	128:14 129:5	equipment 151:21	evaluated 33:18
118:5	emission 139:3	175:11 178:21	165:15 175:8,22	58:19 62:18 65:3
effective 20:21	emphasis 85:21	engineer's 98:15	183:7 210:5 218:6	67:10 71:15
effectively 10:22	emphasized 42:17	enhanced 51:21	erring 216:4	112:17 156:1,12
17:15 222:9	empirical 170:10	ensure 8:12,20 22:2	error 175:1 176:5	165:18 180:3
effects 18:12	employed 141:16	30:15 32:12 35:7	177:7	195:13
	141:18,20	35:15 44:1 45:16	errors 28:14	evaluating 33:5
efficiency 25:16 31:13	employees 217:6	49:11 61:7 94:6,7	especially 72:13	61:21 62:2 113:5
efficient 11:4 20:21	218:16	139:20 156:11	157:4 218:22	134:1,12 210:11
25:8 26:17	employs 28:2 231:6	213:11 214:2,16	essence 58:17	evaluation 23:8,10
	enables 98:3	ensured 30:4	essential 166:7	23:13,19 24:7
efficiently 17:15 37:12	enabling 7:22	ensures 26:10 50:2	167:5 225:17,19	26:21 33:9,10
effort 9:7 12:17	encouraged 78:22	ensuring 23:3	226:1	41:17 42:7 90:11
13:11 25:2 32:18	79:2 136:19 221:2	36:10	essentially 71:11	103:13 137:12,18
	endorse 30:10	entangled 122:15	216:2	138:5 168:19
40:1 51:9,14	endorsement 30:3	entered 55:7	establish 31:5	evening 199:13
84:21 85:3 213:18	ends 176:15 222:19	enters 56:15	49:17 100:4	event 22:10,22 23:2
			l	l

٦

				D 4 4 5 4 6 5 6 4 4
23:6 26:11 28:10	examine 170:5	210:1,7,18 227:6	30:2 39:21 40:9	F 1:15 135:9,11
28:11 49:18 51:20	examined 78:21	expectations 50:13	40:10 41:19 42:15	facet 53:10
58:15,17,18 86:19	example 39:10	120:18 156:2	43:11 44:15 45:15	facilitate 211:9
86:20 98:20	42:13 63:18 76:8	213:12	48:19 52:17 76:6	facilitates 28:12
100:21 101:1,18	82:5 84:12,16	expected 28:6	77:21 130:4 150:1	facilitating 25:17
101:19 102:2,6,21	88:6 91:3 96:15	52:11 56:19 63:11	216:8,10,11	26:17
103:15,19 118:7	98:4 105:21	65:7,16 67:18	explosive 84:14	facilities 1:3 4:5,21
133:17 134:2	125:14 136:22	68:1 120:17	96:19 124:10	9:22 22:13 33:3
151:18 159:2,3,9	137:9 139:9 140:3	156:20 206:2	126:2 178:3	44:11 90:20 91:10
159:10 164:3,3	150:10 171:15	expedient 123:12	195:12	92:16 121:17
167:3,8 170:21	examples 48:1	expeditious 25:17	explosives 128:5	128:7 179:20
176:15 187:18	166:16	expensive 165:8	exponential 170:6	180:6,12,18,19
210:20 227:7	exceed 26:8	216:11	170:7 171:7	184:3 212:20
events 23:9,12 24:3	exceeded 29:14	experience 20:11	exponentials	228:9
24:7,9 25:22 26:6	61:8	20:14 21:10,17	171:18	facility 8:4,7,8,15
27:14 28:4 30:5	exceeding 29:9	26:20 28:19 54:19	expose 14:17	8:19 9:4 13:15
40:1 51:18,20	excellent 205:17	91:14 96:2 190:2	231:13	14:21 21:11 24:1
58:9 81:19 86:14	231:22	experiment 171:2	exposed 14:14	25:19 30:18,20
98:11,12 102:3	exceptions 86:1	experimental 27:2	exposure 25:15	32:10,16 36:8
103:2,6,11,14	excessive 90:21	experiments 61:22	155:5 169:4	37:4 42:19 44:4,7
105:10 109:15	exchange 231:22	67:3 69:5 81:14	expressed 105:12	45:2 48:16 50:1,3
110:1 111:12	exchanges 9:18	105:20 192:14	expressing 221:2	50:11 59:6 78:20
141:12 142:10,11	excite 114:19	expert 18:18 33:14	expressions 160:5	94:5,7,9,11,19,21
143:9,10 155:12	excited 115:5	35:6 79:20 134:8	extend 179:12	94:22 95:1 96:8
164:22 167:4	excursion 96:14	135:1 162:2,3	215:9	102:22 103:9
178:3 180:13	excursions 96:3	163:12	extended 28:15	135:8 138:20,22
189:5,11 209:19	Excuse 34:7 149:10	expertise 179:3	extending 178:3	139:3,5 154:5,6
226:6 227:21	Executive 54:12	experts 13:4 28:18	extensive 168:3	157:5 166:19
228:6	exemplary 20:20	53:22 65:10 120:5	232:1	180:2 181:3,6
eventual 9:21 12:7	exercise 7:15	134:9 168:6	extent 7:8 14:18	202:12 211:8
17:17 47:1	exhibits 63:12	181:12 190:1	79:14 87:19,20	212:20,21 216:12
eventually 158:1	exist 22:4 35:9	205:11,17,22	88:5 148:3	216:22 218:8,13
everybody 191:2	92:18 125:3 133:8	215:4 231:16	external 13:2	225:15 230:7
evidence 30:3	133:10	explain 7:18 15:3	externally 167:18	fact 25:4 50:10
222:6	existing 145:18	explained 127:14	extra 92:5,11,19	56:7 61:22 65:12
evidenced 93:13	161:10 178:16,18	explains 150:14	Extraction 24:11	73:21 85:10 87:1
evolution 31:3	exists 11:19 44:9	explanation 199:7	extraordinary	90:9 113:6 116:22
98:22 156:5,19	expand 115:7	explicitly 189:7	149:15	123:3,16 128:6,22
evolve 55:14	expanded 51:19	explore 15:18	extreme 18:4,14	131:7,9 132:16
evolved 150:16	expansion 87:12	explored 230:7	131:4 176:15	137:4 143:7 151:1
evolves 31:8 64:14	170:4	231:4	190:7 209:20	155:3 178:20
156:17	expect 73:18	explosion 18:2,13	extremely 14:16	214:6 217:12
evolving 157:4,18	111:21 119:19	18:15 39:3 40:1,5	27:22 86:20	factor 173:6 211:2
exacerbates 12:5	131:14 155:1	43:4 45:3 49:1	125:18 222:21	factors 39:4 173:1
exactly 65:5 132:12	182:11 205:5	75:10 79:10 85:2	226:11	173:2,3,8 175:1
157:17 177:10	208:3	130:22	F	176:5 177:7
examination 90:9	expectation 157:3	explosions 18:4,18	r	221:14

factual 146:6	feeling 188:15	fine 77:15 154:11	focus 10:18 79:1	four 26:2 98:20
failed 45:1	feet 116:8,9 138:16	222:5	80:10 93:19	138:16 207:16
failure 9:1 30:2	fellow 19:8	finish 14:7 34:8	163:22 164:1	fraction 55:15
78:1,2 142:8	felt 122:22 123:22	176:17 204:11	focused 40:8	138:15
149:7 158:7	148:13 168:22	finished 191:7	109:13	fragmentation
	148.13 108.22	finite 113:18	focusing 15:1 122:4	131:11
174:22 210:12,12	Felton 228:20,20	176:20	foil 89:20	frame 15:5 71:2
210:14,15,15 219:1	228:21	fire 167:16 169:19	folded 148:14	182:14 221:19
failures 22:17	fewer 25:1	fires 167:20 189:6	folks 82:2,19	frames 209:9
28:13 130:6	fiber 179:7	firewalls 216:22	125:10 169:17	framework 179:4
fairly 73:12 76:21	fields 91:16 92:4	firm 83:2	207:12 211:19	FRANK 2:14
108:21 116:2	224:22	first 5:1 12:1,15	231:21	
144:12 150:16		39:8 41:14 49:9	follow 6:18 89:21	frankly 83:19 172:12 184:14
fall 208:4	figure 81:16,17 126:13	55:12 69:12 73:5	101:9 198:3 222:1	
familiar 84:2	fill 108:2	98:16 107:13	followed 120:15	frequencies 49:18
				frequency 27:17 29:9 43:10 44:14
129:18 family 20:2	filled 191:17 final 14:4 45:19	115:18 119:21 152:10 215:11	following 27:15 29:5 40:16 43:21	48:18 52:16 84:5
family 29:2				
fancy 173:20	46:3 47:5,16 50:4 206:4 212:10	218:2 225:3	51:13 148:6	100:21 103:5
far 4:16,18 115:17		227:22 229:16	180:12 follows 41:14	112:5 116:15
163:15	225:13 231:3 finalized 14:9	first-of-a-kind 94:9		159:3 164:6
farm 64:8 66:3,7,8		201:6 206:6,7	force 174:17	174:20 228:7,12
153:12,13 214:8	finalizes 231:1	fissile 69:10 72:14	forces 115:15 174:2	frequently 222:16
farms 11:14 16:17	finalizing 53:11	fit 87:11	forever 120:21	FRIDAY 1:8
17:6,16 20:16	199:1 F :	fittings 106:16	forgive 154:22	friend 74:22
21:19 57:12 59:13	Finally 30:18 31:15	five 4:13 6:22 59:19	forgotten 228:2	front 77:10 154:1
72:4 229:15	find 73:8,11 76:22	108:17 151:16	form 9:15 12:6	170:5 222:10
230:19	86:12 188:21,22	155:18 212:20	39:12 46:1 50:21	fruition 222:2
fashion 49:20	189:17 201:11	215:8 227:5	52:15 68:6	fuel 136:22 227:12
123:12 208:13	202:18 203:15	fixes 203:13	formal 9:15 12:15	fulfill 9:7 95:6
fast 70:14 71:8	225:21	flame 191:19,20,22	75:19 184:2	fulfilling 21:11
114:17	finding 29:5 31:18	flammable 21:21	formation 52:2	full 100:13 121:5
faster 70:16	46:20 51:17,21	55:14,19 56:5	63:16,19,22 66:14	fully 14:13 119:3
fatigue 103:12	53:2 58:21 119:6	139:10,11,11	118:3,12,13	185:15 205:21
fault 28:10,11	189:17 196:5	216:8	formed 40:21 50:1	206:2
49:17 226:21,22	220:5 222:12	flashlight 91:19	81:18 f 0.(_180.8	full-scale 109:6
features 23:1 25:13	findings 30:9,13	fleshing 150:9	forms 9:6 188:8	fun 112:22
114:13 116:3,4,5	46:3,7,14,19 47:1	flooded 74:6	formulate 9:12	function 26:13 58:3
116:14 165:20	47:19,20 48:7	floods 189:6	forth 69:11 79:4	80:7,8 113:13
February 41:6 43:1	51:1,5,7,8,11,13	floor 5:18 31:20	116:6 Forty 166:21	152:1 158:5,20
Federal 5:1,21 21:9	52:3,13,22 53:8	flopping 173:18	Forty 166:21	159:6 184:6 193:17
35:16	62:10 117:15	flow 63:1 66:2,4	forward 14:7 156:6	
feed 55:20,21 69:17	148:6,11 161:15	67:16 99:9	187:9 198:18,22	functional 193:2
69:18 70:6,7	161:16 162:12,12	flows 99:11	207:19 208:6	functions 25:7
153:2,11 214:3	185:18 195:20	fluid 63:20 70:12	213:11	159:21 160:4
feeds 64:9	201:5 202:15,17	71:10 73:1	found 5:9 8:1 52:5	161:9,11 170:8
feel 81:12 121:12	203:12	fluids 71:7	52:21	171:7 177:19
204:12	finds 203:19	flushes 194:13	foundational 109:3	190:5
	I	l	I	l

fundamental	gauges 89:8,9,15	Glenn 185:10	189:9,19 190:9,10	ground 123:14
109:14 124:22	general 1:19 4:15	Glue 90:2	193:13 195:6	group 36:9 147:22
fundamentally	207:4 229:9	glued 89:12,19 90:1	196:19 197:3	185:14,15,17
37:15	generally 106:12	go 34:13 58:22 59:2	199:8,11 200:6	186:3 198:16
further 7:12 15:22	generate 60:11	66:7 77:2,15 83:6	202:5,9 203:4,14	groups 85:11 113:9
23:19 45:4,21	137:13 193:14	93:3 96:12 99:8	203:16,18 204:9	guess 77:8 91:12
47:7 93:17 149:21	generated 16:21	99:13,20 104:5	204:17,20 208:11	107:19 111:15
165:11 198:7	56:16 57:2,4	106:21 107:22	213:18 219:20	119:21 147:3
206:9,20 221:5	88:22 226:7	118:22 122:2,17	222:5 223:14	180:8 191:14
future 12:10 16:1	generates 17:20	129:11 142:13	226:6 227:15,16	206:17 209:5
35:4 218:19	38:11,21	145:4 152:11	227:17 229:8	guidance 32:15,21
222:17	generating 84:12	188:13,20,21	232:3	159:17 160:12
F36 62:10	193:22	209:20 220:2	gold 175:11	186:18
F37 62:10	generation 38:18	goal 23:3 94:20	good 4:3 36:3 55:11	guidelines 187:6
	56:5 57:14 58:5	123:7 180:14	75:7,8 84:12	Gulf 84:17
G	58:13 60:3,15	goals 15:9	106:22 114:8	guy 182:2
gain 15:19 181:10	61:2,5 65:2,5,7,15	goes 47:11 114:3,6	117:17 118:8	guys 124:3 228:15
gained 181:9,17	65:16 68:4 69:15	123:18 135:10	121:19 131:17	
gains 137:19 138:6	72:3,16,18 73:16	200:9 206:22	139:4 141:3	H
game 221:14	74:2 82:5 145:14	227:5	154:11 163:1,13	H 1:15
garden 173:17	152:17,18,18	going 15:4 17:11	166:16 174:2	Hamaoka 130:3,14
gas 16:20 17:21,22	153:14 167:21	34:8 47:10 59:3	184:22 190:8	hand 83:4 171:22
22:9 27:12 38:2,7	191:21 193:14,18	64:7 69:14,16	224:17	handbook 177:6
38:10,12,16,18	generations 222:17	72:3,6,11,17	gotten 168:10	handful 83:4
39:3,12,16,17	generic 32:21	81:17 82:21 83:4	207:22 211:21	handle 113:2 128:4
52:1,5,6,9 55:14	geometry 100:1	83:12 85:21,22	govern 49:10	139:10 180:12
55:19 56:6,16	109:7 141:10	86:2,3 87:11,19	governed 141:7	183:14 190:14,18
57:8,18 58:2	Germany 40:3	89:20 90:10,15	governing 30:22	hands 136:14
63:22 64:14 66:21	Germeshausen	92:8 99:1 100:18	44:15	handwriting 223:8
68:4 72:2 75:10	175:2	100:20,21 101:1,3	government 5:5	Hanford 3:12,15
79:9 138:14	getting 11:18 60:22	101:6,11,11,22	86:9	4:21 10:13 11:8
147:19 159:21	69:16 123:22	105:8 107:1	grandchildren	21:13,19 33:22
160:6 171:15	142:16 155:14,15	108:14,17 109:18	222:18	37:7,20 215:16,18
191:18 193:17	155:19 169:17	115:9,15 116:17	Grandridge 1:11	216:6 219:14,16
195:12,22 216:8	185:4 190:5	121:5 123:9,10	grapple 117:5	220:2,8,15 221:19
226:7 229:20	207:11 225:18,18	125:13 126:13,17	grasp 114:8 170:18	222:20 226:5,20
gaseous 39:8	give 6:20 7:1 31:20	126:18 127:3	great 21:14 82:2	228:9 229:13
127:20 179:21	74:5,10,14 75:17	128:20 132:8	95:17 122:3 137:5	Hanford's 37:10
180:4	81:11 121:5 122:7	136:15 137:22	149:2	39:8 219:12
gases 22:3 56:14,19	144:3,5 185:6	138:9 140:2,7	greater 27:16	229:15
57:2,2,3,4 82:5	196:18 209:8	142:22 144:17	greatly 225:7,11	happen 86:3 98:13
84:14 118:2	given 10:2 14:22	146:9,10,16 150:8	Greg 1:22 95:17,18	98:14 113:22
139:11 154:1,2,2	59:19 93:12,18	150:9,10,12	113:17	114:3
195:3,14,18,21	185:18 198:17	154:22 157:8,9	Gregory 3:11	happened 84:17,18
226:10	205:16	164:7 173:3	215:12,13,15	84:20 114:6 130:4
gastronomic	gives 126:9	179:17 182:9,21	219:6	happens 109:14
170:17	glass 222:22	185:7 187:10	Grier 175:3	114:4 172:9

happy 53:14 76:19	held 5:4	46:18	Hu 57:19,20,21,22	Idaho 11:20
199:5	Hello 215:13	40.18 histories 212:3	65:4 153:16	idea 81:18 139:4
hard 81:19 125:18	help 13:6 74:16	history 11:7 218:15	hundred 15:11	190:8
194:17	77:4 97:15 123:8	HLP-22 70:5,19	hundreds 20:13	ideal 158:4
harmful 10:20	169:1 225:22	hoary 225:17	115:4	identified 46:3 47:2
haste 213:10	227:16	hoa y 223.17 hoc 172:12	hurt 190:9,10	178:21 179:18,19
hazard 11:1 18:2,6	helped 107:16	hold 66:21 99:2	hurt 190.9,10 hydrogen 3:4,6	identify 75:12
37:1 39:3 61:16	helpers 75:2	219:22	16:19,20 17:1,21	106:10
84:9 132:13 204:2	helpful 190:3	home 226:20	17:22 18:10,13,14	IEEE 175:10
204:3	helps 118:9 123:6	homogeneously	18:18 21:20 22:7	ignitable 188:9
hazardous 14:17	hertz 115:2,2	71:6	22:10 23:6 24:3,7	ignite 22:10 133:20
22:2 26:15 154:2	hesitant 199:19	honestly 222:8	25:22 26:6 28:4	igniters 133:20
216:12 231:13	HGR 73:16	Honorable 19:14	30:2 36:7,19,20	191:4 194:4,10,14
hazards 31:9 36:20	high 27:17 29:6	hope 148:20 204:17	38:2,4,5,7,9,10,12	ignition 22:8 39:5
40:5 94:14 136:21	84:9,14 86:15	222:15	38:15,16,21 39:3	39:15,18,19 133:7
head 35:14 112:4	91:16 95:4 101:22	hoped 147:1	39:5,17,21,22	133:12 134:12,13
183:18 185:6	111:10 112:5	Horizon 84:19	40:5,7,9,13,22	134:20 135:5,15
heading 227:13	116:15 130:19	horse 188:7	41:3,8,11,19 42:5	135:20 136:3,9,11
headquarters 5:18	131:2 134:2,16,16	hose 173:17	42:14 43:11 45:10	137:5,8,11,15
health 8:12,21 10:4	142:7 220:12,17	hot 14:15 43:2,17	45:15 46:5 48:10	139:13,20,22
10:10 12:11 15:8	230:4	44:22 91:5,6,8,12	48:19 52:2,17	140:10 142:10
185:9 229:12	higher 73:2	102:10,13,15,18	53:11 56:6 57:14	187:19 188:10,19
healthy 197:12	highly 74:21 80:11	209:7 210:1 230:3	58:9,9,20 59:4	190:15 191:18
205:2	85:4 86:14 96:19	231:11	60:2,10,15 61:2,5	194:16 196:5,6,7
hear 127:12 216:2	113:14	hour 74:14 121:2,5	61:15 64:13 65:2	226:9,12,15
heard 21:8 69:19	high-hazard 85:4	167:7	65:5,6,15 69:15	ignorant 115:22
86:21 99:19 137:9	139:10	hours 166:21 225:6	72:2,3,16 73:16	imagine 149:16
140:19 154:16	high-level 11:8	House 107:13	74:1,12,13 77:21	imagining 191:18
183:11 184:14	16:21 21:20 22:12	HPAV 18:10,21	96:18 131:19,20	immediate 4:10
191:12 212:12	22:13 37:10 70:5	22:22 23:2,9,12	133:1,2,5,19	29:2
hearing 1:5 4:7,22	high-point 132:17	24:9,15,20 25:1,4	138:21 141:10,11	Immobilization 9:9
5:7,10,12 6:4 7:7	high-pressure	26:10,22 27:4,10	142:20 145:14	19:20,21 36:13
7:13,15,21 9:5,10	84:11	27:14 28:9,16,20	150:1 152:13,17	impact 12:21 26:16
15:22 16:9 19:11	high-risk 20:15	29:3,20 30:5 31:3	153:14 155:2,10	34:20 50:6 105:11
55:1,8 211:21	high-strength	31:16 41:1 47:7,8	167:21 174:16	137:5 165:22
221:16 229:1,11	130:14	47:21 58:20 61:20	193:14 195:2,13	201:13 217:17
231:4 232:8	HIRT 45:11,18,22	65:11,12,13 97:5	210:20 229:20	impacted 203:19
hearings 17:11	46:2,4,9,15,22	97:5 98:19 99:1	230:9 231:5	impacts 34:22
231:18	47:19 48:7 50:22	102:2,3 109:22	hydrogen-in 18:9	203:15
heart 47:11	51:4,6 52:5 53:1,7	110:16 111:12,20	hydrolytic 65:8	implement 17:1
heartening 189:18	53:8 58:1,11 62:9	117:14 118:22	H-Canyons 180:2	30:13 47:6 48:6
heating 39:16	80:21 93:14 134:3	150:3,4 160:19	т	119:3 198:19
heavier 69:10	135:18 147:4,5,6	161:14 162:2	$\frac{I}{IOD 154.1}$	implementation
73:13 96:12	149:4 182:5 201:5	168:8 176:7	ICD 154:1	16:22 29:5 30:8
111:17	202:15 203:12	185:18 195:20	ICD-19 59:22 60:6	42:17 148:6
heaviest 96:20	HIRTS 65:22	198:14,20	60:7	161:13 162:11,17
heavily 109:13	HIRT's 45:11	HSS 185:9	ice 133:19	182:4 185:13,20

202:1,2	106:8 138:15	199:9 208:21	163:22 164:1	instability 101.21
implemented 31:16	inches 23:17	indeterminate	initiate 129:2	instability 191:21 install 99:3
33:19 47:3 143:19	incident 170:1	218:11,18	initiated 12:14	instance 165:1
144:8 157:20	include 16:14	indicate 62:15 67:8	24:13	167:7 187:21
171:9 194:9	23:22 27:11 45:2	176:22		instances 189:21
			initiating 13:1 164:22 189:11	
203:12,13	53:8 56:14,19,22 112:10 128:21	indicated 13:17 24:5 56:4 97:3		Institute 27:6,8
implementing 46:7 143:20 202:15		178:13 206:16	initiation 133:5 initiatives 19:18	54:18 85:13 175:10 212:2
	175:7 189:19,20 210:22	215:7		
implications 217:3 229:18 230:9	included 22:21		initiator 133:3	institutional 152:15
		indicates 216:17	inline 22:5 23:4	
implicit 15:5	23:13 112:17 140:11	individual 82:1,14	26:7,12 36:21	instruments 218:6
importance 21:10 122:8 123:19		94:15,15 112:1	44:17 45:20 47:15	integrated 164:1
	including 10:4 21:2 39:15 109:8 168:7	116:12 181:18,20	55:16 57:3 77:20	integrity 23:2 44:2 intend 60:16
220:14		202:3 220:4	78:2,15 100:22	198:19
important 13:9 27:18 48:9 52:8	incoming 60:17	industrial 155:4 175:8	105:11,14,15	
	incomplete 18:16 184:12		109:9 182:6,9	intended 14:6
53:10 56:10 68:3		industries 13:5	209:18	18:12 26:13 40:19
69:22 78:5 80:2 82:0 20 02:20	incorporate 30:18	136:21 139:9,9	innate 25:6	44:3 45:12
83:9,20 92:20	50:5	industry 26:19	inoperable 26:14	intending 198:21
93:2 109:3 111:4	incorporated 19:3	28:18 30:3 81:20	inordinate 123:17	intends 44:16
112:17 124:15	23:16 49:11 116:3	82:3 84:3,9,10	input 45:22 88:19	50:15
127:1 135:22	148:17 202:19	85:10 90:19 91:10	143:22 161:5,8	intensity 24:2
143:3,8 144:8	incorporating 24:1	95:9 96:2,5,11	163:21 171:6	intensive 84:21
145:11 149:22	increase 25:9 98:16	139:16 169:1	193:20	85:2
150:6,20 151:4	99:4,16 104:5,12	186:2 187:12	inputs 30:15 57:18	intent 143:17
161:12 165:8,14	104:22 131:15,22	190:2 204:5	80:4 81:5 146:6	interacting 38:8
165:20 166:2	132:1	Ines 1:25 19:14	160:21,21 164:11	interaction 93:14
172:12 183:2	increased 156:10	54:2	164:17 202:9	interactions 24:4
187:10 205:9	215:22	inevitably 16:21	inquired 11:2	30:12
209:16 215:20	increasing 97:19	inform 13:6 100:11	inquiring 7:19	interest 88:2 93:16
218:18 227:20	increasingly	185:22 186:7,21	inquiry 15:22	169:20 215:17
228:6,12	230:21	informal 9:17	inside 82:11 90:5	interested 6:1
imprecise 174:9	incredible 86:19	information 7:5	113:14 128:5,11	122:11 195:12
imprecision 174:14	220:9	15:21 27:18 48:20	136:22 140:4	interesting 82:15
improve 25:16	incredibly 205:8,8	75:3 128:21 130:5	156:9 169:9	112:22 172:9
32:18	independent 18:21	166:14 175:20,20	insight 27:16 81:1	interface 59:22
improved 27:10,11	24:14 28:17,18	200:16 211:17	127:10 209:8	99:7
31:12	29:4 30:9 31:19	220:11 231:22	insightful 27:22	internal 13:2 99:9
improvements 31:7	33:13 35:6 45:11	informational	insights 30:19	216:16
46:10,12	58:21 65:11	223:22	118:8 181:9,10,16	international
impulse 172:7	117:14 119:1	informed 15:7	insignificant 38:22	180:13
impulsively 129:19	127:5 159:19	infrastructure 36:9	inspect 44:22	internet 5:8
inaccessible 91:1	160:20 161:6,15	214:5,8,17	inspectability	interpretation
inadequately 42:12	161:18 162:2	inhibit 91:17	175:5	178:20
inappropriate	168:4,9 171:11	initial 11:10 40:7	inspected 90:20	interrupted 216:7
198:9	172:3 185:16,19	108:18,20	inspection 91:8,9	interruption 18:8
inch 26:2 98:20	195:20 198:15,20	initially 69:9	92:3 106:9	intervention

			 	
138:14	124:5,12 185:11	53:17 56:4 118:11	Knutson 1:25 54:6	Lastly 42:5 49:16
introduce 4:9 20:1	195:7 198:22	130:2	119:14,21 120:4	52:3
26:15 54:1 139:5	206:18 207:8,19	keep 89:7 120:11	155:7,21 157:14	late 85:2 185:2
introduced 204:2,3	208:12 213:1	126:4 156:18	205:5,7 212:11,17	latest 26:19
introducing 122:14	217:6,9,11 218:18	228:17	213:19 214:1,11	latitude 44:9
intuitive 81:12	219:11,18 230:8	keeping 15:6	KOSSON 2:12	Laughter 107:8
invert 139:13	issues?4 183:14	Kennewick 1:12	kPa 174:16	121:3
investigation	items 216:22	ketchup 70:10	Krahn 20:5 35:13	layer 25:5
143:13	iterative 203:22	key 14:13 45:21	35:19 183:16	LCOs 200:17
investigations	204:4	48:3 108:6 126:3	199:7	leach 63:8 66:11
108:20	i.e 81:6 162:17	130:12,18 217:15		lead 36:7 187:3
invite 19:12 53:20		kilohertz 115:4	$\frac{\mathbf{L}}{\mathbf{L}}$	leader 18:21
invited 18:20	$\frac{\mathbf{J}}{\mathbf{J}}$	kilometers 227:1	lab 71:1 112:13	205:13
invoked 44:6	Japan 40:2 134:15	kind 12:15 50:11	116:8 182:18	leadership 20:2
involve 11:3 177:15	Jen 3:11 215:12,15	69:18 82:18 84:6	laboratories 13:5	leads 36:6
209:8	jeopardy 219:1	86:6 96:14 107:11	110:11 128:8	leak 138:21 210:2
involved 4:19	Jessie 1:15 4:10	112:22 116:10,16	laboratory 108:22	211:7,11,13,13
84:10 85:14 94:10	jet 203:11 229:17	137:14 139:14	116:6 136:4 154:5	leakage 12:5
108:14 119:15,20	230:1	172:10 173:16	182:21	leakers 12:4
122:1 125:10	job 96:15 120:14	204:12 209:9	labs 182:19	leaking 12:2
148:9 168:16	123:8 125:1	228:10	lack 15:22 220:15	leaks 44:22 189:6
169:16 222:4,15	Joe 107:7,20	kinds 116:3 125:9	lacked 218:4	211:6 230:13
225:22 226:8	John 1:17 3:17	149:13 226:14	lacks 43:22	learn 14:19
involvement 51:5	4:12 33:14 223:5	know 34:12 68:11	Lag 70:5	learned 95:14
148:3 168:8	joining 75:5	71:22 72:11,12	Lagdon 20:8 31:21	129:9
219:15	Jones 208:1	79:4 81:16,22	32:1 34:8,11,14	leave 94:21,21
involves 17:19	Joseph 1:15 4:13	92:18 100:16,17	34:18 35:19	119:13 123:13
192:11	54:16	112:2 115:17	language 221:12	190:8 198:11
in-pipes-and-anc	journal 82:9	120:22 121:7	Laponite 52:19	led 205:18
18:11	127:15	135:10 149:17	62:7 63:11,12,14	Lee 147:20
iron 194:7	journey 143:16	152:16 167:10	63:20 67:2,4	left 4:10,11,16 20:8
irrevocably 187:3	judged 41:19	174:10 175:21	large 10:11 15:20	94:22 104:15
IRT 58:20 61:20	judgement 216:2 judgment 104:11	176:10,11,19	38:17 71:13 83:12	regung 217.110
65:14 176:7	188:16	177:2,4 180:18	87:9,10 89:9,18 123:4 175:8 183:5	Lekband 224:14
issue 31:22 32:7		185:8 190:16,21		length 68:9 120:12
35:4 40:20 53:6	July 5:2 jumpers 105:11	190:21 191:2	203:1,10 212:9 213:4 228:5	191:10 192:2,21
65:22 131:11	210:4 211:7	197:17 205:10	215:4 228:5 229:22	lengths 228:8
136:16 154:18	June 42:10 217:16	208:21 209:13	larger 58:13,18	lengthy 129:3
172:22 217:16	justification 44:20	215:19 221:2	70:16,21 71:8	LEO 2:17
221:9	117:16,18 175:15	225:6 226:16	73:13 110:12	letter 76:9 207:15
issued 23:8 46:2	217:1	knowing 94:22	118:3 195:22	letters 9:17
issues 11:3 14:10	justified 52:10	221:3 knowledge 120:10	largest 38:11	letting 155:6
14:13 15:7 33:16	190:2 230:17	knowledge 129:10	large-scale 201:4	Let's 146:22 150:2
37:15,16 44:5	justify 42:14	181:5 220:15 221:4	202:14	211:12 lovel 24:2 10 25:11
75:11 76:10,14	Justing 12.17	known 9:9 39:18	Larry 1:16 4:11	level 34:2,19 35:11 51:18 78:15
92:17,18 122:4,10 122:12,15 123:20	K	81:20 94:1 132:14	228:20	106:10 126:19
122.12,13 123.20	Kasdorf 36:3,5	01.20 74.1 132.14	220.20	100.10 120.19
			1	

٦

167.22 194.0	little 29.1 60.6	long tome 11.5	L ovo 228.2 6	Monafield 1.17
167:22 184:9	little 38:1 69:6	long-term 11:5 46:12 207:10	Love 228:3,6 low 29:8 30:1 38:16	Mansfield 1:17 4:12 137:22 138:9
187:1 189:5	89:11,16,19			
230:12	106:20 114:15	221:19	67:21 70:12 113:6	138:13 152:9,10
levels 42:6 140:21	122:18 123:18	LONI 2:13	142:8 226:11	153:4,13,20 154:4
141:2,21	124:4,13 128:19	look 63:1 71:2	lower 73:4,6 131:6	154:10,21 157:7
liable 155:4	168:16 172:1	76:16 79:3 97:18	228:7	157:21 158:10,13
licensed 218:13	175:14 183:17	111:22 127:22	lowest 39:18	159:5,15 160:22
licensing 168:18	187:15 192:17	129:11 130:20	M	162:5,8,20 163:8
218:9	193:3 197:5	131:7 135:21	$\overline{\mathbf{M} 2:13}$	163:11 164:20
lick 187:15	199:19 212:18	136:17,20 139:8	Madsen 3:14 219:8	167:6 169:10,22
lieu 189:20	live 83:11	140:17 141:15,17	219:9,13 223:3	170:3,13 172:6,22
life 11:12 12:22	living 82:3	141:19 143:15	Madsen's 225:13	173:10 174:4,12
13:8 28:7 30:17	Liz 3:14 219:8,13	145:9,16 160:2		174:19 175:14
102:22 103:8,19	225:13	178:9 188:4	magnitude 29:10	176:3,12,18 177:5
123:3 169:18	load 29:15 100:17	221:20	84:6 155:11	178:1 179:5
211:7	100:18 101:21	looked 90:8 160:20	main 122:9 123:20	181:22 182:1
light 219:18	104:21 151:18	207:2 210:16	138:19	183:9 184:11
lighting 166:8	171:6 172:10	229:16	mainline 198:2	186:10 187:1,14
lightly 129:22	loaded 129:19	looking 28:12 76:4	maintain 44:2 95:5	189:3,13,16
likelihood 17:3	loading 80:6,7	79:5 82:4 84:22	103:7 104:8 142:9	190:13 191:1
86:7	113:12,20,21	85:3 89:6 90:4	142:12 144:21	193:8,12 194:1,6
limit 6:22 99:12	115:1 124:10	91:20 108:22	maintainability	194:12,15 195:5
102:11,12 103:10	126:3 130:21	110:14 119:17	175:5	195:16 196:2,9,16
103:14 158:17,17	197:2,4	127:11,11,12	maintained 165:15	197:6,8,21 229:6
215:8	loadings 113:8	134:21 136:22	175:9	Mansfield's 179:16
limitations 17:3	loads 26:3,7 29:7	142:16 143:8,11	maintenance 210:6	March 76:9 77:6
limited 7:4 14:16	29:12 101:4	147:18,22 158:11	210:10	161:3 207:15
23:20 105:22	106:18 149:13	158:18 161:7	major 124:4 157:3	margin 43:16 65:6
166:10 167:13	165:17 166:7,7,11	178:14 198:4	201:1 227:12	134:22 231:9
182:7	178:7,22	203:8,9	making 7:8 46:11	margins 149:5
limiting 103:13	located 95:22	looks 113:12	80:3,16 90:18	mason 194:7
200:17	location 5:3 24:2	198:21	135:17 150:11	mass 169:18
limits 99:6	196:5,6,12	Los 181:13	198:9 201:3	mass-weighted
line 32:13 98:1	locations 55:22	loss 28:13 165:1,16	215:20	153:15
182:8	log 177:9,11,13	166:18,20 167:7	manage 155:20	material 37:18
lined 211:8	logic 28:11 61:14	169:18 189:7,9	156:3,5	55:1 82:7 89:11
lines 159:17	61:17 159:21	lost 142:16	management 19:13	90:5 99:22 100:2
link 5:9 196:20	160:6	lot 34:13 55:1 69:9	20:7 21:5 54:4	100:15 102:4
links 118:6	long 18:8 86:14	71:21 82:20	145:19,20 183:20	114:22 130:9,15
liquids 139:11	87:20,22 108:14	105:12 110:5	184:8 187:8	137:16 141:20
list 6:5 122:11	116:8,10 129:15	111:3,4 121:7	205:12	192:21 199:4
201:3 215:11	132:14 139:2	124:1 125:8 134:7	manager 24:12	materials 39:1
224:12	166:21 182:17	139:8 143:16,16	54:4,6,15	69:11 72:14 92:17
listed 6:7	197:1,14 210:11	146:6 166:22	managing 19:5	130:11 136:7
listening 226:2	211:14 225:6	168:10 172:14,18	mandate 15:6	139:10 140:4
listing 189:4	227:1	179:9 181:5 206:6	manner 29:13	matter 146:13
liter 74:14	longer 58:16	212:19 213:5	186:1	190:1 208:10

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1		1	1
Mattson 28:22 34:5 98:14 99:13 186:10 187:14 113:7 141:13 95:2.6 147:1 157:22 100:1.2 102:6.19 189:3.13.16 162:7.8.18.19 mission-driven mature 15:617 104:13.20.20 190:13 191:1 168:4 178:17 157:15 maximum 14:18 183:8 199:22 194:15 195:5.16 231:7.9 misspack 194:22 maximum 14:18 183:7 61.52.1 69 200:3.61.14.22 111:4 113:15.18 misspace 64:17 145:13 176:10.20 meeting 1:5 4:6.22 198:1 199:2.10.22 44:8.9.18 80:8.18 158:14 MAX-2 32:15 36:15 205:1 219:1 202:13 203:4.7 113:21 115:14 misunderstanding mean 71:22 72:17 231:4 232:4.48 206:1-9 208:15 159:20 185:22 mitigated 41:22 19:19 123:7 meeting 7:104:7.9 220:21 221:7 MEio1 115:16 mitigating 132:19 133:13 149:13 meets 17:7 104:7.9 220:21 221:7 Mitio1 115:16 mitigating 132:19 123:71.41,7 35:22 54:21 74:16 32:24:18 61:115 micromer 91:20 mitigating 132:19 124:11 17:1 117:17:38 1192 105:8	214:6 224:12	mechanisms 38:6	178:1 179:5 182:1	45:13 47:14,22	36:14 37:13 41:18
$\begin{array}{llllllllllllllllllllllllllllllllllll$	matters 7:20 93:3	meet 23:18 26:4	183:9 184:11	60:12 95:3,8	41:20 42:2,14
	Mattson 28:22	34:5 98:14 99:13	186:10 187:14	113:7 141:13	95:2,6
164:18 107:12 165:14 193:8,12 194:6,12 179:4 201:20,22 misspak 194:22 maximum 14:18 183:8 199:22 194:15 195:5,16 231:7,19 methods 41:15 misspake 194:22 145:13 176:10,20 meeting 1:5 4:6,22 198:1 199:2,10,22 44:8,9,18 80:8,18 158:14 MAX-2 32:15 66:15 205:1 129:1 202:3,6,11,14,22 111:4 113:15,18 158:14 33:19 34:3 223:22 229:10,11 204:6,15 205:5 127:6 128:15,16 misunderstanding 133:15 132:7 meeting 23:18 209:216:3 Mexico 84:17 mitigatied 41:22 133:15 149:13 meets 17:7 104:7.9 220:21 221:7 MEI01 115:16 mitigatieg 132:19 123:7,14,17 35:22 54:21 74:16 32:24 18:61,15 micromer 91:20 mix 16:16 39:10 221:12 74:20 90:17.91:6 77:7 19:8 32:2 midel 1950s 12:3 mizer 28:17:3 131:11 11:14 12:19 168:8 214:20 mide 1950s 12:3 mixer 69:3 14:41:11.75:1 177:38 119:8 21:55 229:2 227:1 mixer 69:3 14:41:11.75:1 177:38 18:72 midel 190:12	147:1 157:22	100:1,2 102:6,19	189:3,13,16	162:7,8,18,19	mission-driven
maximum 14:18 183:8 199:22 194:15 195:5,16 231:7,9 misspoke 194:3 133:15 135:9 217:14 196:2,9,16 197:8 mithods 41:15 misspoke 194:3 145:13 176:10,20 6:3 7:6,15,21 16:9 200:3,6,11,14,22 44:8,9,18 80:8,18 issuederstand 33:19 34:3 23:22 229:10.11 204:6,15 20:5: 127:6 128:15,16 224:5 mean 71:22 72:17 231:4 232:4,4,8 206:1,9 208:15 159:20 185:22 mitigating 132:19 133:13 149:13 meeting 1:5,16,17 229:24:6.7 microm 89:13 mitigating 132:19 134:11 021:16 member 1:7:104:7.9 220:21 221:7 microm 89:13 mix 16:16 39:10 213:7,14,17 35:22 54:21 74:16 35:21 36:4 53:8 mid-19508 12:3 microm 89:13 meaning 98:8 91:15,21 92:10,21 35:21 36:4 53:8 mid-19508 12:3 mixez 22:8 71:6,16 meaning 910:020 93:4 106:22 107:9 35:18 80:21 mid-19508 12:3 mixez 73:12 meaning 91:190:20 108:11 110:13 147:18 162:1 mike 208:19 17:210 216:18 meaning 10:00:2 93:4 10:52 20:2 22:1	mature 156:17	104:13,20,20	190:13 191:1	168:4 178:17	157:15
133:15 135:9 217:14 196:2,9,16 197:8 methods 41:15 misstate 64:17 145:13 176:2 196:18 63:76,15,21 16:9 200:3,6,11,14,22 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 111:4 11:15,18 122:45 111:14 11:15,18 122:45 111:14 11:15,18 122:45 111:14 11:15,18 121:15 111:14 11:15:16 111:14 11:15:16 111:14 11:15:16 111:14 11:15:16 111:14 11:15 111:14 11:15:16 111:14 11:15:16 111:14 11:15:16 111:16:16 111:14 11:15:16 111:16:16 111:16:16 111:16:16:17 111:14 11:15:16 111:14 11:15:16 111:16:16:17 111:16:16:17 111:16:16:17 111:16	164:18	107:12 165:14	193:8,12 194:6,12	179:4 201:20,22	misspeak 194:22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	maximum 14:18	183:8 199:22	194:15 195:5,16	231:7,9	misspoke 194:3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	133:15 135:9	217:14	196:2,9,16 197:8	methods 41:15	misstate 64:17
$\begin{array}{llllllllllllllllllllllllllllllllllll$	145:13 176:10,20	meeting 1:5 4:6,22	198:1 199:2,10,22	44:8,9,18 80:8,18	misunderstand
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	177:2 196:18	6:3 7:6,15,21 16:9	200:3,6,11,14,22	111:4 113:15,18	158:14
mean 71:22 72:17 231:4 232:4,4,8 206:1,9 208:15 159:20 185:22 mitigated 41:22 119:19 123:7 meetings 231:18 209:2 216:3 Mexico 84:17 165:3 133:13 149:13 meets 17:7 104:7,9 220:21 221:7 ME101 115:16 mitigating 132:19 158:19 179:7 218:12 229:4,6,7 micrometer 91:20 mix 16:16 39:10 204:10 212:16 member 1:15,16,17 members 1:21 2:10 microns 89:13 73:9,13 125:12 213:7,14,17 35:22 54:21 74:16 3:2 4:18 6:1,15 microns 89:13 73:9,13 125:12 221:12 74:20 90:17 91:6 7:7 19:8 32:2 middle 119:11 mixer 62:3 172:10 216:18 meaningful 19:20 93:4 106:22 107:9 53:18 80:21 mid-1990s 12:14 mixer 229:17,21 meass 7:8 50:4 108:11 110:13 147:18 162:1 Mike 208:1 230:1 144:11 175:1 117:38,119:8 215:5 229:2 227:1 mixers 69:3 144:11 175:1 117:38,119:1 119:11 15:12 millijoules 226:10 68:9,19 71:3,15 92:12,19 121:20 130:2 131:13 159:17 161:12	MAX-2 32:15	36:15 205:1 219:1	202:13 203:4,7	113:21 115:14	misunderstanding
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33:19 34:3	223:22 229:10,11	204:6,15 205:5	127:6 128:15,16	224:5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mean 71:22 72:17	231:4 232:4,4,8	206:1,9 208:15	159:20 185:22	mitigated 41:22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	119:19 123:7	meetings 231:18	209:2 216:3	Mexico 84:17	165:3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	133:13 149:13	meets 17:7 104:7,9	220:21 221:7	ME101 115:16	mitigating 132:19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	158:19 179:7	218:12	229:4,6,7	micrometer 91:20	mix 16:16 39:10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204:10 212:16	member 1:15,16,17	members 1:21 2:10	micron 73:10	70:3,8,10 72:12
meaning 98:8 meaningful 190:20 means 37:8 50:491:15,21 92:10,21 93:4 106:22 107:9 53:18 80:2135:21 36:4 53:8 53:18 80:21mid-1950s 12:3 mid-1990s 12:14172:10 216:18 mixer 229:17,21 230:158:17 123:11 144:11 175:1111:1.4 112:19 111:1.3 81 19:8 120:2,19 121:4,15147:18 162:1 168:8 214:20 215:5 229:2 227:1Mike 208:1 mises 66:8 139:1.2 27:1230:1 mixers 69:3 mixers 69:3144:11 175:1 188:2,3 64:13 72:2 92:5 92:12,19 121:0 192:20120:2,19 121:4,15 130:2 131:13 130:2 131:13 159:17 161:12 192:20methode 25:3 159:17 161:12 192:10 130:2 131:13 159:17 161:12 192:20milestone 217:14 million 214:7 203:5,11 217:15 5measured 72:1 192:20 106:6 109:19 138:13 140:13 195:2132:4,8,21 133:13 182:5 184:19 164:14 178:1 189:8 method 64:19,22 89:8 97:15 126:4minimizal 27:14 mixtures 22:9 minimizal 39:13 model 11:18 mobilized 11:18 mobilized 11:18 mobilized 11:18 mobilized 11:18 mobilized 11:18 minimizal 39:13 mobilized 11:18 minimizal 39:13 minimizal 139:13 mobilized 11:18 minimizal 39:13 minimizal 39:13 	213:7,14,17	35:22 54:21 74:16	3:2 4:18 6:1,15	microns 89:13	73:9,13 125:12
meaningful 190:2093:4 106:22 107:953:18 80:21mid-1990s 12:14mixer 229:17,21means 37:8 50:4108:11 110:13147:18 162:1Mike 208:1230:158:17 123:11111:14 112:19168:8 214:20miles 96:8 139:1,2230:1144:11 175:1117:38 119:8215:5 229:2227:1mixer 69:3188:2,3120:2,19 121:4,15mentioned 25:3milestone 217:14mixes 69:364:13 72:2 92:5127:9 129:15,21118:11 155:22millijoules 226:10mixing 17:5 64:464:13 72:2 92:5127:9 129:15,21118:11 155:22millijoules 226:10mixing 17:5 64:4192:20130:2 131:13159:17 161:12million 214:7203:5,11192:20132:4,8,21 133:13164:14 178:1217:15mixture 11:3166:6 109:19138:13 140:13189:8mind 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:8minimizing 139:13model 114:12195:2144:17 145:2,7met1:10 30:6minimizing 139:13model 114:12195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurement146:20 147:7107:15 204:22minor 121:18mior 121:18195:2153:4,13,20 154:4194:19minor 121:18model 114:12195:2153:4,13,20 154:4194:19minor 121:18171:3 187:22mesaures 152:12153:4,13,20 154:4194:19minor 121:1877:13 187:2263:15 89:14155:15 162:5,8method 47:5 124:9146:11 159:18 <td< td=""><td>221:12</td><td>74:20 90:17 91:6</td><td>7:7 19:8 32:2</td><td>middle 119:11</td><td>mixed 22:8 71:6,16</td></td<>	221:12	74:20 90:17 91:6	7:7 19:8 32:2	middle 119:11	mixed 22:8 71:6,16
means 37:8 50:4108:11 110:13147:18 162:1Mike 208:1230:158:17 123:11111:14 112:19168:8 214:20miles 96:8 139:1,2mixers 69:3144:11 175:1117:3,8 119:8215:5 229:2227:1mixers 73:12188:2,3120:2,19 121:4,15mentioned 25:3miles 06:8 139:1,2mixers 73:12measure 63:22121:2 124:791:21 106:15millijoules 226:1068:9,19 71:3,1564:13 72:2 92:5127:9 129:15,21118:11 155:22milliion 214:7203:5,11192:20130:2 131:13159:17 161:12million 214:7203:5,11192:20132:4,8,21 133:13164:14 178:1217:15mixture 11:3106:6 109:19138:13 140:13189:8mind 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:8minimal 27:14mixtures 22:9154:3 171:5 195:3144:17 145:2,7met 1:10 30:6minimi27:13mobilized 11:18measurement146:20 147:7107:15 204:2298:7 176:11,20118:20 119:1195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measures 152:12153:4,13,20 154:4194:19minor 121:18m171:3 187:22mesures 61:1154:10,21 157:7meters 114:19minus 187:21210:10mesures 152:12153:4,13,20 154:4194:19minus 187:21210:10metanical 27:4162:20 163:8,11126:1 132:19mired 222:13modeled 176:963:15 89:14157:21 158:13126:1 132:19mired 222:13mo	meaning 98:8	91:15,21 92:10,21	35:21 36:4 53:8	mid-1950s 12:3	172:10 216:18
58:17 123:11111:14 112:19168:8 214:20miles 96:8 139:1,2mixers 69:3144:11 175:1117:3,8 119:8215:5 229:2227:1mixes 73:12188:2,3120:2,19 121:4,15mentioned 25:3milestone 217:14mixing 17:5 64:4measure 63:22121:22 124:791:21 106:15millijoules 226:1068:9,19 71:3,1564:13 72:2 92:5127:9 129:15,21118:11 155:22millilier 74:1371:22 72:7 95:1592:12,19 121:20130:2 131:13159:17 161:12million 214:7203:5,11192:20132:4,8,21 133:13164:14 178:1217:15mixture 11:3measured 72:1134:3 135:6,13182:5 184:19mind 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:897:15 126:4195:14153:15,19,20144:17 145:2,7met 1:10 30:6minimizig 139:13mobilized 11:18measurement146:20 147:7107:15 204:22minimum 39:18model 114:12195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metal 8179:10minor 121:18171:3 187:22measuring 61:1154:10,21 157:7metas 114:19minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13method 47:5 124:9215:8 227:675:10 198:7110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 167:6174:2	meaningful 190:20	93:4 106:22 107:9	53:18 80:21	mid-1990s 12:14	mixer 229:17,21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	means 37:8 50:4	108:11 110:13	147:18 162:1	Mike 208:1	230:1
188:2,3120:2,19 121:4,15mentioned 25:3milestone 217:14mixing 17:5 64:4measure 63:22121:22 124:791:21 106:15millijoules 226:1068:9,19 71:3,1564:13 72:2 92:5127:9 129:15,21118:11 155:22milliliter 74:1371:22 72:7 95:1592:12,19 121:20130:2 131:13159:17 161:12milliliter 74:1371:22 72:7 95:1592:20132:4,8,21 133:13164:14 178:1217:15mixture 11:3measured 72:1134:3 135:6,13182:5 184:19mind 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:897:15 126:4195:14153:15,19,20142:13,22 144:9message 222:5minimi2 139:13mixtures 22:9154:3 171:5 195:3144:17 145:2,7met 1:10 30:6minimizing 139:13model 114:12195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurement149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10methas 179:10minutes 7:1 34:10model 176:9masuring 61:1154:10,21 157:7methae 195:15146:11 159:18model 176:963:15 89:14157:21 158:13methade 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8methade 173:12215:8 227:675:10 198:7mechanical 27:4164:20 167:6174:2miscommunicati79:81 10:8,20,2139:15 54:17 99:11164:20 167:6 <td>58:17 123:11</td> <td>111:14 112:19</td> <td>168:8 214:20</td> <td>miles 96:8 139:1,2</td> <td>mixers 69:3</td>	58:17 123:11	111:14 112:19	168:8 214:20	miles 96:8 139:1,2	mixers 69:3
measure 63:22121:22 124:791:21 106:15millijoules 226:1068:9,19 71:3,1564:13 72:2 92:5127:9 129:15,21118:11 155:22milliter 74:1371:22 72:7 95:1592:12,19 121:20130:2 131:13159:17 161:12milline 74:1371:22 72:7 95:15192:20132:4,8,21 133:13164:14 178:1217:15mixture 11:3measured 72:1134:3 135:6,13182:5 184:19mind 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:897:15 126:4195:14153:15,19,20142:13,22 144:9message 222:5minimizal 139:13mixtures 22:9154:3 171:5 195:3144:17 145:2,7met 1:10 30:6minimizal 139:13mobilized 11:18measurement146:20 147:7107:15 204:22minimum 39:18model 114:12195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metals 179:10minor 121:18minor 121:18measuring 61:1159:5,15 162:5,8methad 195:15146:11 159:18210:1063:15 89:14157:21 158:13methad 195:15mide 22:13modeled 176:9110:10159:5,15 162:5,8methad 47:5 124:9126:1 132:19mide 222:13mechanics 113:11169:10,22 170:3methodologiesmiscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4	144:11 175:1	117:3,8 119:8	215:5 229:2	227:1	mixes 73:12
64:13 72:2 92:5127:9 129:15,21118:11 155:22milliter 74:1371:22 72:7 95:1592:12,19 121:20130:2 131:13159:17 161:12million 214:7203:5,11192:20132:4,8,21 133:13164:14 178:1217:15mixture 11:3measured 72:1134:3 135:6,13182:5 184:19min 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:897:15 126:4195:14153:15,19,20142:13,22 144:9message 222:5minimizing 139:13mobilized 11:18measurement146:20 147:7107:15 204:2298:7 176:11,20118:20 119:1195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metals 179:10minutes 7:1 34:10model 176:9measureng 61:1154:10,21 157:7metane 195:15minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13methad 175: 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mixed 22:13modelig 33:1639:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,2139:15 54:17 99:11164:20 167:6174:2misced 107:6 122:6118:13 167:21mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19 </td <td>188:2,3</td> <td>120:2,19 121:4,15</td> <td>mentioned 25:3</td> <td>milestone 217:14</td> <td>mixing 17:5 64:4</td>	188:2,3	120:2,19 121:4,15	mentioned 25:3	milestone 217:14	mixing 17:5 64:4
92:12,19 121:20130:2 131:13159:17 161:12million 214:7203:5,11192:20132:4,8,21 133:13164:14 178:1217:15mixture 11:3measured 72:1134:3 135:6,13182:5 184:19mind 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:897:15 126:4195:14153:15,19,20142:13,22 144:9message 222:5minimal 27:14mixtures 22:9154:3 171:5 195:3144:17 145:2,7met 1:10 30:6minimizing 139:13model 114:12195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metals 179:10minutes 7:1 34:10modeled 176:9measuring 61:1154:10,21 157:7meters 114:19minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13methane 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19mission 10:16168:3 186:13	measure 63:22	121:22 124:7	91:21 106:15	millijoules 226:10	68:9,19 71:3,15
192:20132:4,8,21 133:13164:14 178:1217:15mixture 11:3measured 72:1134:3 135:6,13182:5 184:19mind 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:897:15 126:4195:14153:15,19,20142:13,22 144:9message 222:5minimal 27:14mixtures 22:9154:3 171:5 195:3144:17 145:2,7met 1:10 30:6minimizing 139:13mobilized 11:18measurement146:20 147:7107:15 204:2298:7 176:11,20118:20 119:1195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metal 38:21177:3150:14 170:6,16measures 152:12153:4,13,20 154:4194:19minus 187:21210:10measuring 61:1154:10,21 157:7meters 114:19minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13methane 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:	64:13 72:2 92:5	127:9 129:15,21	118:11 155:22	milliliter 74:13	71:22 72:7 95:15
measured 72:1134:3 135:6,13182:5 184:19mind 64:19,22 89:8174:15 194:19106:6 109:19138:13 140:13189:897:15 126:4195:14153:15,19,20142:13,22 144:9message 222:5minimal 27:14mixtures 22:9154:3 171:5 195:3144:17 145:2,7met 1:10 30:6minimizing 139:13mobilized 11:18measurement146:20 147:7107:15 204:2298:7 176:11,20118:20 119:1195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metals 179:10minutes 7:1 34:10150:14 170:6,16measures 152:12153:4,13,20 154:4194:19minutes 7:1 34:10model 176:9measuring 61:1159:5,15 162:5,8method 47:5 124:9215:8 227:6modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9215:8 227:6mined 222:13mechanical 27:4162:20 163:8,11126:1 132:19mixcommunicati79:8 110:8,20,2139:15 54:17 99:11164:20 167:6174:2mixcommunicati79:8 110:8,20,21116:12 117:12141:16,17,19138:5118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	92:12,19 121:20	130:2 131:13	159:17 161:12	million 214:7	203:5,11
106:6 109:19 153:15,19,20138:13 140:13 142:13,22 144:9 144:17 145:2,7 144:17 145:2,7189:8 message 222:5 met 1:10 30:697:15 126:4 minimal 27:14 minimum 39:18 98:7 176:11,20195:14 mixtures 22:9 mobilized 11:18 model 114:12measurement 195:2144:17 145:2,7 144:12 145:2,7 144:4,22 149:3,10189:8 212:1297:15 126:4 minimal 27:14 minimum 39:18 98:7 176:11,20195:14 mixtures 22:9 mobilized 11:18 model 114:12measurements 89:8151:5 152:3,10 151:5 152:3,10metal 38:21 194:19177:3 moters 114:19 metane 195:15 methane 195:15 methane 195:1597:15 126:4 minimum 39:18 98:7 176:11,20195:14 mixtures 22:9 mobilized 11:18 model 114:12measures 152:12153:4,13,20 154:4 157:21 158:13 110:10194:19 methane 195:15 method 47:5 124:9minutes 7:1 34:10 146:11 159:18 215:8 227:6model 176:9 modeling 33:16 75:10 198:7 models 27:20 51:18 79:8 110:8,20,21 116:12 117:12mechanical 27:4 39:15 54:17 99:11 mechanics 113:11 mechanism 38:20172:6,22 170:3 172:6,22 173:10methodologies 141:16,17,19mission 10:16168:3 186:13	192:20	132:4,8,21 133:13	164:14 178:1	217:15	mixture 11:3
153:15,19,20142:13,22 144:9message 222:5minimal 27:14mixtures 22:9154:3 171:5 195:3144:17 145:2,7net 1:10 30:6minimizing 139:13model 11:18measurement146:20 147:7107:15 204:2298:7 176:11,20118:20 119:1195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metals 179:10minor 121:18171:3 187:22measures 152:12153:4,13,20 154:4194:19minues 7:1 34:10model 176:9messuring 61:1154:10,21 157:7meters 114:19minues 7:1 34:10modeling 33:1610:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19miscommunicati79:8 110:8,20,2139:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	measured 72:1	134:3 135:6,13	182:5 184:19	mind 64:19,22 89:8	174:15 194:19
154:3 171:5 195:3144:17 145:2,7 146:20 147:7met 1:10 30:6 107:15 204:22minimizing 139:13 minimum 39:18mobilized 11:18 model 114:12195:2148:4,22 149:3,10107:15 204:22 212:1298:7 176:11,20118:20 119:1measurements149:19 150:4 151:5 152:3,10metal 38:21 metals 179:10177:3150:14 170:6,16measures 152:12153:4,13,20 154:4 154:10,21 157:7 63:15 89:14154:10,21 157:7 159:5,15 162:5,8metal 14:19 metals 179:10minutes 7:1 34:10 144:19modeled 176:9 modeled 176:9mechanical 27:4162:20 163:8,11 164:20 167:6126:1 132:19 174:2126:1 132:19 141:16,17,19miced 222:13 missed 107:6 122:6models 27:20 51:18 18:13 167:21mechanism 38:20172:6,22 173:10 174:4,12,19 176:3174:2 198:5mission 10:16168:3 186:13	106:6 109:19	138:13 140:13	189:8		195:14
measurement146:20 147:7107:15 204:22minimum 39:18model 114:12195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metals 179:10177:3150:14 170:6,16measures 152:12153:4,13,20 154:4194:19minus 187:21210:10measuring 61:1154:10,21 157:7meters 114:19minutes 7:1 34:10modeling 33:1663:15 89:14157:21 158:13methane 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	153:15,19,20	142:13,22 144:9	message 222:5	minimal 27:14	mixtures 22:9
195:2148:4,22 149:3,10212:1298:7 176:11,20118:20 119:1measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metals 179:10minor 121:18171:3 187:22measures 152:12153:4,13,20 154:4194:19minus 187:21210:10measuring 61:1154:10,21 157:7meters 114:19minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13methane 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	154:3 171:5 195:3	144:17 145:2,7	met 1:10 30:6	minimizing 139:13	mobilized 11:18
measurements149:19 150:4metal 38:21177:3150:14 170:6,1689:8151:5 152:3,10metals 179:10minor 121:18171:3 187:22measures 152:12153:4,13,20 154:4194:19minus 187:21210:10measuring 61:1154:10,21 157:7meters 114:19minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13method 47:5 124:9215:8 227:675:10 198:7110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	measurement	146:20 147:7	107:15 204:22	minimum 39:18	model 114:12
89:8151:5 152:3,10metals 179:10minor 121:18171:3 187:22measures 152:12153:4,13,20 154:4194:19minus 187:21210:10measuring 61:1154:10,21 157:7meters 114:19minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13methane 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9146:11 159:18modeling 33:169:15 54:17 99:11164:20 167:6174:2mired 222:13models 27:20 51:18mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19153:61 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5198:5mission 10:16168:3 186:13	195:2	148:4,22 149:3,10	212:12	98:7 176:11,20	118:20 119:1
measures 152:12153:4,13,20 154:4194:19minus 187:21210:10measuring 61:1154:10,21 157:7meters 114:19minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13methane 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanism 38:20172:6,22 173:10141:16,17,19121:19116:12 117:1256:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	measurements				150:14 170:6,16
measuring 61:1154:10,21 157:7meters 114:19minutes 7:1 34:10modeled 176:963:15 89:14157:21 158:13methane 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9146:11 159:1875:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanism 38:20172:6,22 173:10141:16,17,19121:19116:12 117:1256:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	89:8	,	metals 179:10		171:3 187:22
63:15 89:14157:21 158:13methane 195:15146:11 159:18modeling 33:16110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13		, ,			
110:10159:5,15 162:5,8method 47:5 124:9215:8 227:675:10 198:7mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	measuring 61:1	154:10,21 157:7		minutes 7:1 34:10	modeled 176:9
mechanical 27:4162:20 163:8,11126:1 132:19mired 222:13models 27:20 51:1839:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13	63:15 89:14				U
39:15 54:17 99:11164:20 167:6174:2miscommunicati79:8 110:8,20,21mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13					
mechanics 113:11169:10,22 170:3methodologies121:19116:12 117:12mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13		· · · · · ·			
mechanism 38:20172:6,22 173:10141:16,17,19missed 107:6 122:6118:13 167:2156:5,8 66:20174:4,12,19 176:3198:5mission 10:16168:3 186:13					
56:5,8 66:20 174:4,12,19 176:3 198:5 mission 10:16 168:3 186:13		,	6		
		, ·			
190:19 176:12,18 177:5 methodology 42:7 21:12 25:18 31:14 modern 82:18	-				
	190:19	176:12,18 177:5	methodology 42:7	21:12 25:18 31:14	modern 82:18

modes 175:1 228:1	82:20 91:22	155:15 164:5	normal 28:7,8 31:4	number 25:13 28:6
228:3	mystified 197:6	175:21 192:6,8	104:19,21 106:18	35:1 75:17,19
modest 79:16	M3 95:15 217:16	194:2 200:7	130:8 157:2,14,15	78:6 93:20 103:11
modifications 8:10		201:18 202:22	177:9,11,13 210:9	117:13 125:22
modify 155:9	<u> </u>	211:18 212:8	210:14,17	139:21 155:12
molecules 38:8,14	name 4:4 6:11 36:1	213:10 225:21,21	normalized 191:9	159:10 176:8
moment 15:16	36:4 119:22	needed 51:8 53:3,5	normally 159:22	182:19 203:9
momentum 173:19	215:15 219:13	164:12	North 85:1	NUREGs 184:17
money 216:1 217:2	223:4,8	needing 140:21	Northwest 70:22	NUREG-1855
monies 214:7	names 224:11	needs 122:7 184:14	225:12,20 226:20	160:10
monitor 8:16	nascent 194:19	186:15 193:1	note 13:9 64:11	nuts 149:9
monitored 156:12	national 13:5 19:3	204:18 213:5,14	74:6	N2 152:18 153:21
mono 190:9	23:16 71:1 128:8	NEM 186:19	noted 16:5 148:17	N2O 152:17 153:21
Monte 197:13	167:18 169:15	net 29:22	notes 211:21	
month 15:10	nationally 33:14	Netherlands 85:7,8	noteworthy 49:7	0
months 155:4	natural 177:14	network 205:11,16	notice 5:22 217:6	objectives 34:6
204:22 207:21	nature 17:20 137:6	never 47:8,13	noticed 5:1 69:8	obscures 123:20
217:11 227:14	165:10 175:12	48:13 91:11	77:2	observation 40:16
morning 4:3 9:6	182:16 185:12	107:15 131:10	novel 48:12 94:8	43:21 197:12
36:3 55:12 75:7,8	near 16:1 35:4	137:9 165:7 190:7	November 7:11	221:8
106:22 183:11	227:17	209:21	121:10,10,15	observations 63:21
212:13 224:17	necessarily 16:1	new 8:6 18:15 58:4	182:13 232:5	observe 44:22
morning's 17:11	89:20 95:20	61:11 96:16 97:5	NQA-1 200:1	63:15,19
36:15	171:16 172:4	128:21 146:4	NQA1 162:14	observed 42:11
motion 82:6 89:19	necessary 8:11,20	154:6 191:11	NRC 33:1,8 169:1	81:3
137:16	17:1 49:6 63:21	news 96:7	175:9,9 218:13	obstacles 208:9
motions 87:3 89:14	80:13 115:7,8	Newtonian 63:7	nuclear 1:3 4:5,20	obtaining 13:3
move 70:20 87:12	134:4 145:10,20	66:19 67:19 70:3	8:7 20:9,11,19	obviously 66:19
114:17 148:21	160:15 179:3	70:8,9,10,18,22	30:20 32:9,10,16	68:18 73:6 91:18
156:6 217:2	183:1 201:19	71:4,17,19 111:16	33:2 36:8 40:2	109:12 134:17
moves 89:12 115:5	210:9 211:6,10	nice 173:13	44:11 48:16 49:12	153:8 161:7
moving 89:13	218:7	nitrates 195:8	49:15,22 54:14	165:13,18 178:10
114:18 136:7	need 12:5 17:8	nitrogen 39:13	92:16 94:10,11	181:12,16 182:14
143:17 156:22	30:22 34:8 51:17	58:2,5,10 118:3	95:9 97:10 121:16	182:17 193:1
182:22 187:9	59:13 61:11 63:16	152:13 195:17	130:4 132:9,15	201:15 212:1
213:6	64:12 76:15 78:21	nitrous 39:12 58:2	142:7 144:3	232:1
much-delayed	83:10,13 94:3,6,6	58:5,7,10 131:19	145:22 157:5	occupied 207:21
219:19	99:19 100:1,2,11	174:16	160:11 162:15	occur 16:8 23:3
multiple 20:17	100:13,16,17	non 67:18 70:8,21	163:12 164:20	30:2 86:16 87:7
103:2,6 122:1	103:4,5 104:3	71:3,18	165:16 166:5	102:21,22 159:10
143:9,10 155:10	116:17 117:20	non-Newtonian	168:13 179:20	196:14 216:17
177:15	119:2 124:3	63:7,12,17,20	187:2,11 203:21	occurrence 145:3
multiplied 132:10	126:12 128:13,14	66:17,18,22 67:2	204:1,5 205:11,16	occurring 23:1
multi-decade 37:13	133:2,2,3 136:1	67:17 68:2,16,17	205:19 216:12,14	occurs 87:13 196:8
multi-functional	138:2,11 140:9	70:20 71:7,10	216:17 218:9	227:7
28:2	145:8,22 146:1,9	non-reactor 157:5	224:21	October 1:8 40:15
multi-physics	148:21 150:17	non-safety 216:22	nuclei 57:20	offered 35:21
		r r		
L	•	•	•	•

				Page 252
183:16	177:21 212:22	214:15	205:1	189:1
offers 35:22	232:5	opportunity 6:16	outstanding 14:9	parameters 52:8
office 20:7 21:5	opening 3:2 19:7,9	6:21 19:17 32:3	overall 20:19 38:18	145:10,12 155:16
24:12 54:5 155:7	19:14 25:3 155:22	69:4 94:18 99:4	47:22 76:1 79:21	155:18 159:20
156:15,16 157:16	openness 221:1	107:10 206:5,22	92:2 109:11	160:5,8,9 161:10
208:21 214:13	225:10	215:14	112:18	162:22 166:19
offset 102:11	operability 24:16	opposed 155:18	overblows 229:21	170:7 177:16
offshore 227:2	94:7 154:17	option 97:19	overridden 219:2	paramount 21:4
offsite 165:1,2,16	operate 10:21	options 14:15	overriding 188:11	part 9:6 15:14 16:2
166:18 167:7	16:14 19:22 37:11	167:11,13	189:1	31:4 32:17 49:18
189:7,9	50:1 96:6 217:20	oral 9:11		58:19 65:13 95:2
off-shore 84:20	222:9		oversight 4:19 9:19 12:16 205:15	
		order 6:8,10,19,20		101:5 111:8
off-site 166:20	operated 33:4 50:3	39:2 44:3,12	208:20	112:22 114:20
oftentimes 122:22	operating 10:2	50:16 75:18 115:2	owner 20:17 44:7	118:21 120:5,9
Oh 121:21 137:12	17:4 28:8 91:13	132:2 185:12	155:19	127:4 128:12
154:10 200:2	104:19,21 106:18	orders 49:13	oxidant 22:8	129:1,2 152:2
203:6	130:19 132:9	ordinarily 114:20	195:10,11,17	161:12 180:7
okay 34:18 57:17	153:9 214:17	Oregon 227:9,14	oxide 39:12 58:6	202:11 205:9
61:9,13 64:10,15	217:21 225:18,19	Oregon/Washing	73:11 131:19	210:10
67:5,12 68:21	operation 9:21	226:22	174:16	partially 191:17
75:4 77:12 79:6	10:9 11:14 13:6	organic 38:14	oxides 58:2	participate 18:19
80:20 87:22 88:10	16:13 31:8 37:6	organics 56:9	oxidizer 133:3	120:7
93:7 97:13 101:17	68:13,18 144:18	Organisation 85:7	oxygen 39:5,8,9,11	participation 19:2
103:10,16 108:11	145:3 157:8	organization 123:6	P	169:5
121:1 124:3	165:22 174:20	123:8,16 129:5		particle 73:11
129:12 137:21	200:18 219:4	153:8 215:16	P 178:7 228:1	particles 33:21
138:8 146:11	230:4	organizations	pace 156:18 157:17	69:10 70:11,11,14
148:19,22 152:21	operational 12:21	53:22 85:6 86:8,9	Pacific 70:22	70:15,16 71:14
153:14 154:10	13:8 14:14 25:9	136:18 143:21	page 187:17 189:4	73:9,10,12,14
159:15 173:10	25:16 30:17 31:13	231:16	191:7 193:9,12	111:17
176:18 181:1,21	37:17,19 41:20	organize 27:1	224:16	particular 17:12
189:16 196:9,16	211:3	original 43:18 97:5	pages 15:11 147:15	51:13 78:11,21
212:10 213:20	operations 11:5	132:5,6 176:21	197:9	101:12 192:8
223:16 224:2,9	21:2 25:8 26:17	191:5	painful 222:2	207:14,15 212:7
old 10:15,15	26:18 28:3 36:17	originally 143:12	paint 70:9	particularly 84:9
once 14:13 62:22	45:6 54:14 144:1	ORP 155:7	Palm 138:22	88:8 96:11 116:20
66:10 69:21 71:6	157:1 205:15	oscillations 27:17	panel 1:21 2:10 3:5	171:11 189:17
81:13 151:14	210:16 211:5,19	112:5 115:1,3	18:19 27:7 53:20	215:20 228:5
167:11 174:14	214:10,18 218:19	116:15	54:21 55:9 119:11	parts 82:1 116:12
188:8 209:17	231:12	ought 140:11	panelists 55:2,3,5	143:17
231:19	operator 20:17	outcome 156:20	paper 35:5 173:13	pascals 67:20,22
ones 78:18 228:14	28:13 94:22 153:9	188:17	197:9	passed 183:10
one-of-a 50:10	operators 44:21	outliers 197:14	papers 83:5	passive 23:1,14,18
ongoing 24:6 76:13	153:4	output 158:2	paragraph 9:1	25:13,22 97:8,11
76:14 168:7	opinion 78:14 79:8	outputs 81:6	34:15	97:16
onset 131:1	79:20 92:11	outside 137:17	parameter 153:3	path 14:7 28:5
open 5:4 7:11	124:17 135:17,19	138:4 149:15	164:3,4,15 188:18	207:18 208:6
	, -			
	1	•	1	1

	1	1	1	1
213:11	permanent 27:15	pilot 186:19 230:3	95:6 96:13 100:22	36:13 45:6 51:18
paths 198:18	43:3,6 44:21	pipe 23:16 25:22	103:8,17 106:16	54:7,9,12,15 56:6
patting 173:14	permission 121:9	27:2 29:11 30:1	109:7,22 110:11	57:16 59:15 86:11
PAUL 2:16	168:20	40:13 41:11 49:2	111:11 112:1	145:3,21 153:5
pay 93:2	permit 7:3	56:15,17 61:16	113:5,20 114:16	154:5,17,18
PDF 193:16	permits 44:6 215:9	78:1 87:14,15	114:20,21,21	155:19 157:9,18
peak 44:14 48:18	perplexes 113:1	89:12,12,13,21	115:11,16 116:2,7	163:17 164:17,21
159:9 172:5,11	person 215:11	96:12 97:19 98:6	125:6 126:5,5,7	165:4,8 166:1
pedigree 175:6	personal 147:2	98:7,15,17,17,19	126:21 127:18,19	167:12 184:7
218:7	personally 231:19	98:21,21 99:4,5,6	129:2 140:4	189:5 204:11
peer 161:13,18,19	personnel 19:2,5	99:9,13,16,20	142:12 144:4,6	206:5 210:9 214:4
161:20,21 177:20	28:3 35:4 143:22	100:6,7,7,11,18	149:6 150:1,19	214:10,16 217:5
185:16 186:4	perspective 28:1	101:3,12 104:2,5	159:12 168:20	217:19,20,22
198:4,17	74:6,11,15 95:12	104:12,20,22	179:22 180:5	218:1,3,12,17,21
penalty 217:22	96:1 97:10 106:3	106:5,11 109:2	202:4 209:7,17,18	219:2,13 220:8,15
pencil 173:13	122:10	111:6,7 113:14	209:22	222:9,21 225:18
people 6:7 84:3	perspectives 21:10	114:4,14 125:15	pivot 14:6 212:15	225:19 229:13
85:11 106:4	pertains 30:22	128:11 130:6	213:8	230:4,20,22
127:12 129:11	Peter 1:12,14 4:4	136:5 152:19	pivoting 14:1 15:1	plants 84:15 85:4
132:13 158:18	93:5	158:5 189:5	213:16	130:5 132:9,15
169:7,11 197:17	petrochemical	191:16 192:19	PJM 229:20	164:21 216:16
222:3 226:18	84:15 96:10	pipelines 82:11	place 84:22 85:21	plant's 14:5 17:4,5
227:21	PEURRUNG 2:13	Piper 85:1	136:10 192:2	31:7 231:9
percent 13:12,14	phase 219:4	pipes 3:4,6 37:19	221:3	plant-wide 51:19
13:16 59:20,20,20	phases 56:20	45:10 48:10 58:20	plagued 222:19	plastic 23:20 71:11
88:5,8 101:14	phenological 51:22	72:15,17 82:7	plan 30:8,10 46:13	79:10,14,16,22
102:10,19 103:19	phenomena 27:11	85:17 138:15	46:17 47:2 62:15	80:12 86:5,16,18
106:4,6,13,14	42:4 75:10 82:22	155:10 169:9	64:8 65:21 119:4	87:1,5,16 101:13
130:7 131:20	83:10,22 99:2	231:5	119:6 120:7	102:5 103:21
174:15,18	177:15 178:22	pipes-and-ancilla	148:10,18 182:5,6	104:4,16 105:4,9
percentile 34:2	phenomenology	18:10	182:10,12 185:13	105:22 106:10,14
35:11	27:12 109:14	pipe's 79:9	185:20 200:16	106:17 131:1
perfect 96:15	118:20 147:19	piping 18:1,3,13	208:2 230:4	149:5,14 155:11
perfectly 77:14	philosophy 14:20	22:4,11,16 23:2,4	planned 203:1	158:18
87:22	physical 42:3 82:22	23:14 24:9 26:1,3	planning 14:3	platforms 84:20,22
perforations 22:17	83:21 89:6 172:21	26:7,9,11,12,14	plans 53:8 151:12	played 85:9
perform 26:13 52:6	physics 172:1	27:13,14,17 29:15	217:10 221:17	please 146:16
52:19	179:7,9 186:13	29:18,20 36:21	plant 9:9,10 10:7,9	148:21 198:13
performance 13:7	191:14 192:12	38:21 39:2 40:6	10:19 12:12,13	219:6 223:3 224:5
17:5 54:13 100:9	pick 146:11	40:11,22 43:2,6	13:7,12,13,19	pleased 229:21
156:3 157:11	picture 108:2 122:5	43:11,13,17 44:8	14:12 16:11,13,15	pleasure 96:3
213:13	222:16	44:22 45:4 46:6	16:18 17:15 19:20	PLI 138:18 139:1
performed 212:5	piece 89:11,20	48:20,21 49:1,4	19:21 20:16,21	PLIs 139:5
performing 45:8	114:22 125:15	55:16 68:11,12	21:8,15 22:1,15	plots 65:14
period 167:1	136:5 151:21	69:14,15 77:19	25:9 26:10,18	plugging 37:18
periodically 8:15	202:18	78:7,16 79:1,2,11	28:7 31:12 32:5	plus 129:9 177:7
periods 18:9 28:15	pieces 78:11 82:4	81:4 87:3,17 88:8	33:6 34:5 35:3,8	plutonian 73:11

	1			
plutonium 24:10	45:15 98:11,12	prediction 80:12	131:5,15,21 132:1	principally 227:21
216:19	102:21 109:22	predictions 43:12	132:5,7 134:16	principles 183:22
PNNL 2:13 70:22	149:17	80:3 114:14 116:1	138:16 142:12	prior 98:22 143:12
pocket 52:1 159:21	postulating 136:9	159:12,12	171:3 172:11	priority 122:8
160:6 171:16	Posturing 221:4	predominant 56:4	204:7,9,13 212:3	135:3,3
Podonsky 185:10	post-leach 66:15	56:7	pressures 96:5	privatization 12:17
point 16:7 80:11	67:18	prefer 97:10	97:17 99:12	probabalistic 48:14
113:10 115:21	potential 12:21	preferred 97:9	130:19 131:2,3	probabilistic 29:19
120:10 123:21	18:3,6,7 28:4 39:7	prejudice 177:13	159:9 170:22	145:11 184:13
124:15,20 150:7	39:14 40:4,10	preliminary 188:4	presumably 179:11	probabilities 167:3
150:21 160:22	42:4 48:19 50:6	prepared 53:13	presume 177:2	209:21 226:12
161:7 169:19	58:8 71:8 84:13	61:1	presumes 176:10	probability 24:2
171:21 183:2	93:17 103:6	prescribe 115:14	pretending 220:18	29:8 30:1 84:4
186:22 189:21	141:12 143:9	172:19	pretreatment	133:4,6 134:10,11
193:20 212:14	164:16 165:22	prescribes 178:21	36:17 37:4	134:19 135:4,15
223:15	204:4 210:19	prescription	pretty 81:20 112:3	135:20 136:3,12
pointed 221:8	226:9,15	128:10 129:11	113:6 114:17	140:10 142:8,10
points 121:18	potentially 45:7	prescriptions	129:4 132:11	145:17 158:4,19
122:9 225:3 226:3	58:18 77:20 98:20	115:20 126:8	173:21,22 183:12	159:6,20 160:4
poisoned 218:15	171:12 194:7	presence 38:15	188:8 190:21	161:8,11 163:4,6
policy 183:13 184:2	power 28:13 40:2	91:16	191:13	164:6 175:16
184:7 186:15	94:11 132:9,15	present 1:13,18,21	prevent 9:2 18:14	177:3 180:11
policy/directive/	164:21 165:2,2,3	2:10 4:21 22:9	22:16,22 23:12	187:18,20 188:10
185:5	165:17 166:18,20	32:3 38:3,4 39:4	52:14 216:8	188:11,15,19
poll 74:22 134:8	166:22 167:8	39:11 56:9,20	preventing 39:21	190:5,15 193:17
polyethylene 84:12	189:7,10	57:3,4 130:13	40:9	193:22 201:16
poor 11:14	PRA 145:11 160:21	139:21 215:14	prevents 216:10	probable 125:11
populated 85:5	161:13 162:1,7,10	224:13 228:21	previous 6:17 16:3	probably 77:13
portion 73:4 229:1	167:5	presentation 6:12	37:2 41:3 56:3	98:7 106:19
portions 148:1	practice 5:21	6:16	59:2 194:4	112:13 121:8
posed 208:18	157:14 187:13	presentations 7:4,8	previously 57:13	167:8 194:3 223:9
position 32:8 36:2	practices 136:20	147:10	182:22 193:20	problem 10:11
220:20	137:3 139:8,12	presented 36:20	pre-treat 212:19,21	11:16 81:15,15,19
positions 222:12	PRAs 187:1	presenters 6:22	pre-treatment	82:15,20 86:6
possibilities 110:15	pre 22:12 230:6	presenting 216:6	13:15 218:22	113:11 114:15
possibility 143:9 176:14 216:14	precious 221:5	preside 4:6 President 54:13	primarily 22:12	132:18 155:4
possible 5:12 6:9	precise 174:5,7		23:11 41:19 66:18	158:21 172:2
14:18 87:8 95:1	178:5	presiding 1:12	107:2,21 147:17	178:6 191:3
	precisely 162:22 176:13 197:7	pressing 198:22	primary 18:5 22:14 23:4 37:8 42:16	problematic 12:1
125:11 196:17		pressure 26:1 44:14 48:18 78:11		problems 37:17,19
possibly 131:14 posted 6:6	preclude 99:4 predict 48:17 79:9	44:14 48:18 78:11 84:14 96:14 99:15	43:4 44:2,5 48:15 78:3 95:5 103:8	91:22 172:10 192:12 220:2
posted 0:0 postpone 7:14	79:22 109:21	100:19 103:7	108:10 155:13	222:19 225:14,20
postulate 98:13,20	110:9 118:6	100:19 103:7	163:21 179:18	procedures 211:5
140:2	141:18 192:4,10	113:13 125:16	199:17 231:10	proceed 7:18
postulated 22:10	predicted 49:3	127:15,18,19	prime 42:13	proceed 7.18 proceeding 7:10
23:6 25:21 26:6	predicting 79:10	129:1 130:21	principal 228:14	proceedings 15:9
23.0 23.21 20.0	Producting / 7.10	127.1 130.21	Principai 220.14	Proceedings 13.7
	I	I	I	I

15:10,15	108:8,12 109:4,11	propagating	171:22 180:20,21	202:6
process 13:4 17:16	111:9,20 113:4	170:14	211:17 229:9	PUREX 24:10
18:1,3 25:6 31:5	114:9,10 117:9,11	proper 10:8	provided 15:11	105:21 106:5,6
31:14 35:15 36:20	119:15,16 129:9	properly 49:11	41:7 46:6,9 54:19	purges 194:12,13
46:19,21 48:21	149:18 183:20	52:6,22 89:17	64:8 66:2 81:1	purpose 40:19
53:9 56:9,20 60:9	184:9 187:9	properties 11:17	109:2 118:7 143:7	122:14 160:16
62:2 63:4,5 66:10	193:16 205:12	62:16,17,21 63:3	161:4 168:12,13	199:18
66:12 68:3,12,18	214:3 218:5	63:9,11 64:3,4,7	176:1 177:20	pursuant 29:17
69:22 70:6 71:19	programs 26:21	65:22 66:5,6,9,13	180:7 188:5	pursue 42:21 93:22
85:10,12 94:15	27:9 89:2 144:21	66:17 67:2,8,10	provides 27:22	pursued 13:2
96:19 98:2,6	145:19,20 147:11	67:13,15,17,19,21	29:18 94:18	push 136:4
101:5 112:11	187:7	68:2,8,20 71:10	111:10 158:10	put 72:9 87:9 90:1
116:13 120:10,15	progressed 115:21	71:11 100:15	183:6	96:18 98:18 99:2
129:2,3 134:8	project 9:13 11:8	141:21	providing 75:3	106:3 125:17
151:11 157:15	11:21 12:13,15,16	proportions 195:11	166:14	148:10 163:19
179:21 180:5	12:22 13:1,3,19	propose 24:20	provision 44:6	166:3 186:14
185:2 187:5 189:5	13:20 14:22 19:2	149:12 217:2	127:17	223:20 225:6
191:20 193:21	19:6 20:13 21:9	proposed 29:13	provisions 5:5	putting 82:16,22
202:2,7 203:20,22	26:20 27:10 54:6	44:13 51:6,15	23:14	P-R-O-C-E-E-D
204:5 222:2	54:8 58:4 75:12	93:21 124:9 126:1	Provost 107:17	4:1
225:11	75:13 93:15,22	171:10 216:21	prudent 14:20	p.m 232:7
processed 59:10	95:13 96:22 97:7	proposing 170:5	92:12 140:21	
processes 65:4	97:18 98:9,18	protect 25:21 78:1	141:2	Q
156:10 182:16	120:6 123:16	99:14 155:13	psi 132:10 135:9,11	QRA 27:21 28:1
processing 17:9	124:19 127:1,2	165:4,10 200:8	public 1:5 3:10 4:6	29:6,15 30:16,19
18:8 37:20 58:3	136:19 140:6	204:20 222:17,22	5:4,17 6:1,3,15	35:15 43:9 44:13
180:2	148:11 150:8	protected 22:1	7:21 8:12,21 10:4	45:21 47:14 48:5
procure 183:7	156:15,19,21,21	30:17 49:20	10:21 15:7,8 16:9	48:9,14,17 49:8
procured 98:22	157:3 182:15	144:13 145:13,15	18:7 21:3 34:1	49:10,17 50:6,12
218:6	184:18 203:9	145:18 146:4,7	35:10 120:18	50:14,17 51:18,19
procurement 152:2	205:9 207:10	163:17 164:12	215:6,15,17,19	52:9 60:11,21
160:7 182:15,16	212:15,21 213:4,5	202:11	216:3 218:12	61:3,6,14 62:7,16
produce 38:6,10	213:9,13,14	protecting 157:11	219:10,15 220:21	67:9 81:7 88:3
produced 38:2	219:20 221:22	protection 8:12,21	228:22 229:11,12	122:14 133:9,9
39:12 122:20	projected 10:16	10:3 21:4 24:13	231:3,17 232:4	135:21 140:11
130:22	13:7	54:5 146:3 155:8	publicly 5:1 222:11	142:4 144:1 146:3
produces 21:20	projects 20:15,18	156:15 167:16	published 33:9	158:3,10,14,22
38:15	124:21	protocol 224:13	pulse 203:11	159:2 161:13,16
professional	project's 22:20	prove 176:14	229:17 230:1	161:18 163:15
224:20	30:7,10	proven 12:4	pulsing 197:2	166:12 175:17
Professor 54:16	promise 163:9	provide 11:6 14:6	pump 73:3 210:11	185:14,17 186:4
107:4,18 138:14	promulgate 183:21	17:8 33:16 45:12	pumping 111:19	186:11,19 187:5
profit 221:13	promulgated 184:8	55:13,17 56:12	pumps 44:17 78:10	198:3,5 199:14
program 21:16	pronoun 219:20	61:22 75:12 78:15	79:4	201:5 202:10
24:8 76:4 79:5	pronounce 223:4	117:15 134:1,9	pump-out 69:5	206:7 213:2 231:8
80:11 88:15,18,20	pronouncing	135:12 143:22	pump-outs 69:8	QRAs 44:16 202:3
89:3 107:22 108:6	119:22	148:2 164:10	purchase 151:21	QRA's 52:14
L	-	-	-	-

				100.0
qualification 44:19	206:4,13,22	raised 76:9 92:17	124:4,5,16 125:17	199:8
47:15 105:19	211:22 212:11,14	165:5,7 206:18	126:12 128:18	recommended
111:13 151:11,13	questioned 134:4	218:20	130:12 139:4	25:11 58:1 149:4
151:17,19 183:4	questioning 146:19	ran 70:2	141:4,7 148:5	recommends
203:3	198:2	random 160:10,15	150:22 159:2	160:12
qualifications	questions 15:12,13	184:21	166:15 168:22	reconsider 135:20
151:20	15:17 16:6,7	range 28:19 48:18	169:7,17 172:4,15	reconvene 7:14
qualified 23:21	53:15,19 55:3	52:7 67:18,21,22	178:4 185:7	146:16
79:13 105:15,16	58:11 61:19 72:5	68:1 75:21 76:8	197:11,15 200:22	record 7:10 9:10
105:17 128:14	77:13,16 90:15	82:16 106:13	204:16 225:17	15:15 20:19 32:3
182:18,20 199:15	93:8 97:3 101:7	121:18	reanalyzing 61:2	35:13 36:2 55:6,7
199:16,19 202:6	107:2,21 118:1	rapidly 196:22	reason 63:11,13	55:18 56:13 76:20
qualifying 45:20	119:11,18 120:21	rare 222:3	103:4	77:10 146:13
quality 30:5 32:19	122:20 149:1	rarely 39:20	reasonable 8:10,17	194:2 199:6
88:17 162:15	152:6 154:12,14	rate 60:3 61:2	29:18 135:16	205:19 209:14
218:4,5,11,16	155:1 165:5	65:15 71:13 72:3	reasonably 116:1	211:18 219:7
quantifying 137:8	184:15 206:10	72:18 73:17 74:2	reasons 147:3	223:3,21 224:6
quantitative 3:9	209:4,4 214:20	152:17,18,18	216:1	232:1,4
26:22 27:21 43:9	216:6 223:11,14	153:14	receipt 70:7	recording 5:10
118:17,21 141:8	223:18 224:1	rates 60:15 61:6	receive 66:9 76:20	records 220:10
175:17 185:22	225:7	65:2,17 69:15	153:10 222:4	recovery 214:7
188:5 201:17	quick 105:8	73:17 145:14	received 63:2,4	227:15
231:6	quickly 121:6	193:14,18	64:11 206:14	redefining 216:21
quantities 21:22	quiet 146:16	rational 149:12	receiving 11:9	redesign 13:10,13
quantity 17:21	quite 83:19 87:11	Rayleigh 228:4	recess 7:14	25:2 31:11 99:10
74:12,15 133:14	129:3 131:2	reaction 191:10	recognize 166:1	redesigned 49:4
133:15	172:12 174:5	192:21	recognized 33:14	reduce 12:10 25:15
quarter 69:12 73:5	192:13	reactions 65:8	40:4 127:2	25:18 31:13 42:6
quarterly 40:14	quote 8:5 121:11	reactor 135:10	recognizes 37:6,11	231:9
42:9 43:19	127:14 187:16	168:17	recognizing 32:7	reduced 25:13
question 7:7 33:18	quoting 121:8	read 121:7 131:13	227:20	reduces 43:16
34:6 55:6,7,10,12	197:8	readily 45:3 209:6	recollection 108:15	71:13
59:2 62:13 71:20		reading 5:17	recommend 8:9	reducing 37:9
74:19 77:4 79:7	<u> </u>	ready 162:17 206:4	recommendation	reduction 230:11
87:18 88:12 90:16	radiation 21:19	214:3,5,9,18	9:15 30:21 32:11	reenumerate
95:13,15 97:3,14	38:3,8,15 91:16	real 119:10 202:17	119:7 134:18	140:18
101:9 105:8	92:4 170:1	204:10 227:17	135:1 149:8	reevaluate 41:15
137:22 138:9	radioactive 10:12	realistic 140:9	185:21 186:8	reevaluated 33:7
140:16 144:9	14:14 229:15	really 68:7 71:2,21	recommendations	reevaluating 99:11
149:20,21 152:11	radiologic 66:13	72:8,15 83:13	8:18 9:12,14	reexamined 171:12
157:22 170:3	radiological 63:3	87:18 89:13 90:4	24:18 30:10,13	refer 180:19
172:9 178:2,11	64:6 66:17	109:13,17 110:7	33:17 35:6 41:7	reference 131:21
179:14,16,17,19	radiology 61:21	110:14 111:8	41:10,13 42:12,18	180:9
180:8 181:2 192:3	radiolysis 38:7,10	113:6 114:11	42:22 46:4,10,15	references 180:15
192:14 193:15	56:7 82:6	115:18 117:12	47:3 128:1 135:18	referred 13:22
196:4 197:11	raise 88:16 217:7	119:12 122:7	160:19 161:5,17	188:7
198:3 204:16	218:16	123:6,15,19,21,22	176:7 198:18	referring 78:12

113:17 174:21	relied 23:11 39:20	representations	46:18 47:18 51:8	217:21
186:5 197:7 202:8	rely 25:12,22 60:22	62:1	52:22 53:6,7	responsiveness
refinement 198:7	128:12	representative 72:8	117:5 119:3	207:5
reflected 106:1	remain 5:13 7:11	149:6	207:19 217:11	rest 195:17 213:14
125:16 131:5	22:6 28:15 117:1	represented 11:1	225:21	214:2,4,17
203:17	157:18 218:17	represents 52:20	resolved 14:13	restoration 189:11
reflecting 35:5	remaining 119:2	reprisals 218:15	40:20 48:4 51:2	restrictive 17:7
reflective 90:4	151:9 208:12	request 19:11 55:3	198:12 207:9	result 17:6 24:18
reflects 114:5	remains 12:1 15:4	155:8	resolving 10:10	25:14 29:22 31:10
124:18	48:11 60:7	requested 18:17	208:9,12	37:16 42:15 45:7
regard 118:2 137:7	remarks 3:2 19:7,9	require 49:14	resort 192:13	66:2 102:3 111:7
150:9 181:3	19:15 25:3 127:6	50:22 51:9,12	respect 9:8 21:7	111:15 133:10
regarding 27:18	155:22 215:8	99:10 146:2	187:5	153:16 186:3
32:4 49:8 52:1,4	remediate 10:22	220:12 231:12	respond 46:20 77:9	201:12 202:14,15
region 226:19	remediation 37:7	required 27:3	101:1 148:11	210:2 215:21
227:18	remember 160:22	52:22 62:15	213:1	resulted 181:8
Register 5:1,21	reminded 93:20	117:15 158:15	responded 161:14	resulting 17:4 18:6
registered 6:18	167:15 222:16	195:3 230:22	responding 123:17	26:3 37:9 141:12
224:20	remotable 210:5	requirement 59:22	127:5 151:3	231:10
regular 88:9	removing 12:9	151:22 152:22	response 15:17	results 27:2 34:4
regulate 7:13	render 26:14	164:13 195:1	24:6 27:16 28:12	94:7 96:7 120:8
Regulation 160:11	renoticed 5:2	requirements	29:16 30:20 32:9	147:14 163:15
regulations 33:8	renowned 168:5	12:20 33:2 47:15	40:1 46:18 48:21	173:11,12 188:4
35:16 123:9	repair 45:1,4 91:8	49:10 50:12,16	53:1 58:19 61:10	189:2 200:12
regulatory 33:2	91:9 92:3 189:10	61:7 125:1 162:15	65:20,21 79:9	220:18
123:2 160:11	209:6 210:5,7,8	162:16 165:14	97:2 98:16 100:19	resumed 146:14
168:14 218:10	repairs 231:12	183:8 200:1	101:21 109:19	returning 208:10
reiterate 209:17	repeat 47:10	230:18	113:19 114:14	revaluation 60:17
related 12:19 37:15	199:11	requires 49:22	123:6 134:22	review 8:4,6,16
117:8,10 217:12	repeated 27:15	51:18 99:15	148:1,18 159:11	18:21 28:12,17
relating 8:18	repeating 49:9	159:19 192:1	159:12 178:2	29:3,4 30:7,9
relationship 120:12	replace 97:7	Research 27:7 85:8	179:16,19 180:1,7	31:19 33:13,16
156:14 191:8	210:18	88:16 105:21	181:3,4 189:17	35:2,7 45:11,12
193:2	replaceable 210:4	108:5 109:5 110:6	206:13 228:11	45:19 46:22 50:22
relative 27:13 65:3	replacement 45:4	110:12 116:7	responses 102:3	58:21 65:11 75:9
118:19 130:20	210:8,9	212:2	109:16,21 110:9	77:22 88:21 93:14
131:7 187:18	report 23:8,10,13	researchers 226:8	111:11 112:1,2,6	117:14 119:1,17
relatively 38:16	23:19 40:14 42:10	reserves 7:12	112:14,15 141:18	120:9 127:5
70:12	43:20 46:3,15	reserving 212:22	148:14 213:2	145:22 146:1
release 66:20 68:4	64:3,5 65:14	resist 125:14	228:11	147:18 157:10
released 64:1	80:22 155:21	resistant 39:1	responsibilities	159:19 160:20
reliability 45:17	173:15 174:22	resolution 48:7	9:19 32:12 120:13	161:6,14,15,19,19
175:4	182:4,5 187:17	51:4,6 53:9	120:14 156:5	161:21 162:2,7
reliable 114:13	reporter 223:10	162:12 201:4	responsibility	167:22 168:4,9,17
116:1	reports 50:20	206:18 208:6	32:14 220:3	169:5 171:11
reliably 19:22	65:13 147:16	resolutions 31:18	responsible 19:5	172:3 177:21,22
116:21	represent 20:10,13	resolve 14:9 46:7	36:10 126:12	185:16,19 186:4
L				

٦

	I		I	
195:20 198:4,15	142:19 145:11	146:17 221:20	50:3	Sain 2:17 54:12
198:17,20 199:9	165:18,19 166:15	222:7	safety 1:3 3:8 4:5,9	154:9 205:20
232:2	175:17 183:13	rough 137:12	8:13,21 10:4,4,10	sample 72:8 152:19
reviewed 22:18	185:14,15,17	roughly 228:7	11:1 12:11,20,21	153:11
28:16 31:18 45:22	186:3 188:5 198:8	route 28:5,6 62:18	15:8 16:12,22	sampled 60:1
57:13 65:9 77:18	198:16 201:18	63:10 67:10 162:5	17:13 18:11 20:2	sampling 220:10
88:15 148:1	202:17 217:15	162:17,17	20:6,9,11,19 21:2	San 27:8
167:15,17,18	231:6	routes 27:2 162:19	21:3 22:1,21 23:1	Sandy 107:12
180:10 204:1	risks 26:15 215:22	202:3	23:8,10,13,19	satisfaction 16:2
207:16	risk-based 42:3	route-by-route	25:10 26:13 28:1	satisfied 206:17
reviewers 122:1	risk-formed 46:12	158:2	28:3 30:4,21 32:9	207:4
161:20,22	River 11:20 21:18	routinely 87:2	32:10,12,17 35:3	satisfy 187:4
reviewing 28:4	24:13 54:5 155:8	routing 100:7	36:18,22 37:5,15	Savannah 11:20
34:18 37:4 148:16	156:15 175:2	Roy 36:5	37:16,22 40:13	21:17 175:1 180:3
208:3	180:3	rule 178:12 197:12	41:12,18,21 42:19	save 217:1
reviews 13:3 24:14	Rivers 1:10	rules 83:7 91:3	43:13,16 44:4	saw 96:20 112:5
24:19 36:11 47:21	Roberson 1:15	126:20 129:7	45:17 47:6,8,12	saying 67:7 73:21
75:15,20 164:2	4:11 55:10,11	150:10,17	47:21 48:5 49:12	74:21 95:19
revised 17:13 34:19	56:11,21 57:6,17	ruling 140:3	49:15,19,21 50:2	136:14 193:13
35:5 36:22 41:11	57:22 58:22 59:3	178:17	50:5,7,14 54:15	213:7
42:22 43:15 46:8	61:9,13 62:5,9,12	run 43:11 101:12	80:14,15 83:19	says 104:20 128:13
47:6,8 48:10,12	62:20 64:2,10,15	103:17 121:5	85:12 87:21 94:6	130:5 184:19
52:10 230:8	64:18 65:18 67:5	135:8 162:10	97:10 120:18	198:6
Rice 107:12,18,18	67:12 68:7,21	197:13	121:17 122:13	scale 70:21 110:12
Richard 1:19 4:16	74:8,11 75:4,8	running 202:2,4	123:11 124:14	156:21 171:19
20:8 31:21	76:7,18 77:6,12	204:11	125:2,8 136:2	183:5 203:2,11
right 4:12,13,18	78:8,12,13 79:6	runs 96:13 109:1	144:1,13 145:18	230:1
7:12 17:22 20:5	79:19 80:20 81:3	191:2 198:8	145:19 146:1	scales 82:21
57:20,22 62:7	81:9 88:11,14	run-up 58:16 118:6	152:1 154:18,19	Scandinavians
69:12 73:19 77:8	90:12 93:6,7,11	191:9 192:2	157:12,19 163:12	120:3
87:11 94:4 100:10	95:10,11 97:1,13	196:18	163:17 164:2,13	scavengers 38:5
124:11 126:7	97:21 99:18	rupture 43:5	165:15 166:3	schedule 7:12 51:4
135:2 146:8,10,15	100:10 101:6,8	ruptures 227:3,4	180:5 184:13	51:16 93:19 95:21
148:8 161:9	152:12 179:13,15	Russo 2:14 54:7	185:9,22 190:14	97:19 98:6,15,17
169:13 174:12	181:1,21 207:1	93:20 95:11 135:7	191:5 192:7	98:17 99:5,8,8,12
190:18 197:19	214:21 229:5	135:14 204:17,21	199:15,16 201:10	99:16,20 100:6,12
208:8 211:20	robust 27:13 95:3	205:6	201:12 202:11	104:2,6,9,12,12
214:22 221:14	205:18 215:18	RUTLAND 2:16	203:17,21 204:1	104:22 105:1
rigor 103:3 143:7	220:5 221:6	S	205:2,11,14,16,19	182:15 183:1
rigorous 26:21	rock 140:7 Rodriguez 181:20	S 1:12,14 2:12	205:22 206:7 215:22 216:4	201:20 212:22 221:13
risk 3:9 11:4 23:21 25:9,18 26:20,22	role 8:4 32:7 85:9	228:2	215:22 216:4 217:4,4 218:12,17	Sciences 169:15
27:21 31:1,13	109:10,17 147:5	safe 13:6 20:20	217:4,4 218:12,17 219:3 222:9	scientific 83:5 85:8
37:9 43:8,9 45:7	roles 220:4	21:2 123:10 156:2	229:12,19 230:7	scientist 81:12
83:19,20 84:1	roll 226:7	214:18 215:17	230:10 231:10	124:17
86:6,13 92:2	rollover 226:6	safely 10:21 17:15	safety-related	scientists 193:5
118:17,21 141:9	room 5:17 6:14	19:22 21:12 37:12	32:20 36:16 49:13	scope 108:12
110.17,21 141.7	100m J.17 0.14	-, -= == 0, -=	52.20 50.10 47.15	scopt 100.12
	I	I	I	I

scratched 112:4125:19 149:13severe 103:15 $197:15 206:13.15$ simpler 71:21Sca 85:1177:14severitics 49:18 $206:21 208:8$ simply 97:18 99:22Scat6 41:6,18sensitive 89:15severity 34:19 $212:1.6$ 132:15 204:19Seat12 223:10sensitivitis 182:20100:20 103:5Shepherd's 108:22simulat 52:4,5,19Second 33:12.20sensitivity 142:5134:2 159:2,9168:7simulat 52:4,5,1939:11 41:16 49:12188:14230:12shoting 59:19124:8 126:127:29 95:13 101:9sentences 198:6share 177:13,18shoting 59:19124:8 126:1224:16 230:669:22 79:5share 177:12,28:1201:3sirgle-shell 12:3224:16 230:669:22 79:5sheer 67:19show 16:2,10sir 11:20 21:1820:6 54:3 183:10separately 79:4sheer 67:19show 221:8sir 17:733:22 37:7 156:1620:6 54:3 183:10separately 79:4sheer 67:19show 221:8site 11:20 21:1821:19 205:14124:14shell 11:10 12:2show 26:2site 11:20 21:1821:19 205:14124:13sequences 187:1954:16 75:5,7,14show 26:2site 180:122:13 20serious 94:1878:4,9,17 79:1271:17,19 107:1113:623:11 20:213:2276:12,21 77:8,18site 18:17:6site 11:23:1324:14 20:12serious 91:1380:18:2,8,22141:14 158:11,12144:18 158:425:15 06:2serious 91:1380:14:12,92:1113:11 14:14:13:1113:6	G 4266	72 20 122 0	41 5 17	104 0 12 106 12	102 10
Sea 85:1177:14severifies 49:18206:21 208:8simply 97:18 99:22seats 54:1187:2243:10 52:17Stepherd's 108:22simulant 52:45,19Seatts 12.20sensitivities 188:20100:20 103:5109:12 110:4,5G3:16,17second 33:12.20sensitivities 188:20100:20 103:5109:12 110:4,5G3:16,17second 33:12.20sensitivities 188:20100:21 219:2,9168:7simulate 116:1339:11 41:16 49:12188:14230:12short 177:12single single	Scott 36:6	sense 72:20 122:8	seventh 5:17	194:9,13 196:13	192:10
seated 4:16.18sensitive 89:15severity 34:19212:1,6 $132.15 204:19$ seats 22:10187:2243:10 52:17Shepherd's 108:22simulant 52:4,5,19Securit 22:3:10sensitivity 142:5134:2 159:2,9168:7simulate 116:1339:11 41:16 49:12188:14230:12shoting 59:19124:8 126:1114:19 119:22sentences 198:6share 177:13,18shoting 59:19124:8 126:1224:16 230:669:22 79:5sher 177:12,18shoting 59:19sir 34:11,15Secretary 8:9,17separate 11:7share 61:19showe 62:10single-shell 12:322:13 10:19separate 12:1366:2,4 67:16showe 10:2,10sir 34:11,15Secretary 8:9,17separating 122:1366:2,4 67:16showe 21:18137:15 214:1318:19 205:14124:14shell 11:10 12:2show 22:23 37: 156:16showe 22:18site 11:20 21:18secretary 8:21:9September 53: 82: 96:15show 27:14 177:6site 180:1site 180:1secretary 2:1:9sequences 187:1954:16 75:5,7,1466:2:70:217:16136:8Securit 20:6serious 84:1878:4,9,17 79:1271:17,19 107:11sites 11:1918:1012:18 21:1380:18:12,8,22119:7,7 14:15,67136:19 19:15100:18 101:20186:690:17,22 91:11,18side 14:14210:13 220:17105:21 13:20186:690:17,22 91:11,18sides 141:4210:13 220:1713:10 14:22serion 71:10107:3,45,71signal 90:7sit 39:0212:14 12:22 <td></td> <td></td> <td></td> <td></td> <td></td>					
seats 54:1 187:22 43:10 52:17 Shepherd's 108:22 simulant 52:4,5,19 Scatt 223:10 sensitivities 188:20 100:20 103:5 199:12 110:4,5 63:16,17 39:11 41:16 49:12 188:14 230:12 shotting 220:4 simulant 52:4,5,19 72:9 95:13 101:9 sent 153:2 shape 62:3 shooting 59:19 simulations 76:2 224:16 230:6 69:22 79:5 shart 177:13,18 short 177:22 single-shell 12:3 224:16 230:6 69:22 79:5 sheer 71:19 show 116:2,10 site 11:20 21:18 9:2.13,16 19:12 125:4 sheet 67:19 show 116:2,10 site 11:20 21:18 9:2.13,16 19:12 125:4 sheet 67:19 show 27:14 177:6 site 11:20 21:18 9:2.13,16 19:12 secret 37:8 30:7 33:9 46:16 Shepherd 27:6 show 27:14 177:6 site 11:19 9:2.13,16 19:12 series 102:2 76:12,21 77:8,18 68:2 70:21 77:11 site 18:19 site 18:19 9:2.14 13:6:15 serious 34:18 78:4,9,17 79:12 117:17 91 107:11 site 11:19 9:2.14 13:15 serious 34:18					1.
$\begin{array}{llllllllllllllllllllllllllllllllllll$,		•	,	
second 33:12,20 sensitivity 142:5 134:2 159:2,9 168:7 simulations 76:2 39:11 41:16 49:12 188:14 230:12 shorting 59:19 simulations 76:2 72:9 95:13 101:9 sentences 198:6 share 177:13,18 short 127:22 single short 127:22 124:18 18:12 separate 41:17 share 77:17:28:11 38:13 146:9 single short 127:22 single short 127:22 <td< td=""><td></td><td></td><td></td><td>-</td><td></td></td<>				-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		v	,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				U	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0
Secretary 8:9,17 separately 79:4 sheer 67:19 show 116:2,10 site 11:20 21:18 20:6 54:3 183:10 reparating 122:13 66:2,4 67:16 shown 26:2 site 11:20 21:18 185:19 205:14 124:14 shell 11:10 12:2 shown 26:2 site 11:20 Secretary's 21:9 September 5:3 8:2 96:15 shown 26:2 site 11:80:1 secured 22:21 series 102:2 76:16 77:5,7,14 side 56:8 66:16,19 sitting 85:4 Security 20:6 serious 84:18 78:4,9,17 79:12 71:17,19 107:11 sittation 84:7 185:10 121:18 211:13 80:1 81:2,8,22 119:7,7 141:15,6,7 94:12 142:19 seductive 221:14 serious 84:18 78:4,9,17 79:12 71:17,19 107:11 sittation 84:7 105:22 113:20 186:6 92:6,14 93:1,13 side 141:4 120:13 220:17 123:1 127:22 service 210:17 95:18 106:15 sign 6:17 74:9 222:13 139:6 145:2 session 6:3 37:2 120:20 121:1,14 17:21 25:2 26:16 130:13 150:18 20:9 22:6 229:2 77:3 20:72 299:16 120:12 12:17 signific		–	-		8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•			,	
185:19 205:14 124:14 shell 11:10 12:2 shown 26:2 sited 180:1 Secretary's 21:9 September 5:3 8:2 96:15 shows 27:14 177:6 sites 11:19 Section 8:3 77:3 30:7 33:9 46:16 Shepherd 27:6 shuttle 138:19 sites 11:19 Secured 222:21 series 102:2 76:12,21 77:8,18 68:2 70:21 71:16 136:8 Security 20:6 serious 84:18 78:4,9,17 79:12 71:17,19 107:11 situation 84:7 seductive 221:14 serious 18:3 84:8 85:19 86:22 141:14 158:11,12 144:18 158:4 see 71:5,5 96:6 32:14 136:15 88:7,12,13,19 158:15 176:5 168:19 191:15 100:18 101:20 service 210:17 95:18 106:15 sign 6:17 74:9 222:13 139:6 145:2 session 17:10,11 177:3,207:2 29:16 112:11,20,21 signal 90:3 171:3 situations 14:17 146:22 158:21 35:20 55:10 68:9 108:16,18 112:3 signal 90:3 171:3 situations 14:17 146:22 158:21 35:20 55:10 68:9 108:16,18 112:3 signal 90:3 171:3 situations 14:17 126:12 128:21 32:06 231:3<	, ,				
Secretary's 21:9 section 8:3 77:3 September 5:3 8:2 30:7 33:9 46:16 96:15 shows 27:14 177:6 shuttle 138:19 sites 11:19 siting 85:4 128:1 191:16 sequences 187:19 54:16 75:5,7,14 side 56:66:16,19 sitting 123:13 30:7 33:9 46:16 Shepherd 27:6 shuttle 138:19 sitting 123:13 secured 22:2:1 series 102:2 76:12,21 77:8,18 68:2 70:21 71:16 sitting 123:13 185:10 121:18 211:13 80:1 81:2,8,22 119:7,7 141:5,6,7 94:12 142:19 seductive 221:14 seriously 18:3 84:8 85:19 86:22 141:14 158:11,12 144:18 158:4 see 71:5,5 96:6 32:14 136:15 88:7,12,21,19 158:15 176:5 168:19 191:15 100:18 101:20 serve 179:11 184:6 92:6,14 93:1,13 sides 141:4 210:13 220:17 139:6 145:2 session 17:10,11 107:3,4,5,7,7 signal 90:7 84:3 91:2 126:14 208:9 222:6 229:2 77:3 207:2 229:16 112:11,20,21 signal 90:7 84:3 91:2 126:14 208:9 222:6 229:2 77:3 207:2 229:16 112:11,20,21 signal 90:7 84:3 91:2 126:14 208:0 221:16 s		- 0	,		
section 8:3 77:3 30:7 33:9 46:16 Shepherd 27:6 shuttle 138:19 siting 85:4 128:1 191:16 sequences 187:19 54:16 75:5,7,14 side 56:8 66:16,19 136:8 Security 20:6 serious 84:18 78:4,9,17 79:12 71:17,19 107:11 136:8 Security 20:6 serious 84:18 78:4,9,17 79:12 71:17,19 107:11 136:8 set 221:14 serious 91:8:3 84:8 85:19 86:22 141:14 158:11,12 144:18 158:4 set 71:5,5 96:6 32:14 136:15 88:7,12,13,19 158:15 176:5 168:19 191:15 100:18 101:20 service 179:11 184:6 90:17,22 91:11,18 216:4 192:8 197:16 105:22 13:20 186:6 92:6,14 93:1,13 sides 141:4 10:13 20:17 123:1 127:22 service 210:17 95:18 106:15 signal 90:3 171:3 situations 14:17 146:22 158:21 35:20 55:10 68:9 108:16,18 112:3 signal 90:7 84:3 91:2 126:14 208:9 222:6 229:2 77:3 207:2 229:16 112:11,20,21 signal 90:3 171:3 situations 14:17 seeing 21:16 230:6 231:3 188:7 119:12 sig					
128:1 191:16 sequences 187:19 54:16 75:5,7,14 side 56:8 66:16,19 sitting 123:13 secured 222:21 series 102:2 76:12,21 77:8,18 68:2 70:21 71:16 136:8 Security 20:6 serious 84:18 78:4,9,17 79:12 71:17,19 107:11 sittation 84:7 185:10 121:18 211:13 80:1 81:2,8,22 141:14 158:11,12 144:18 158:4 seeductive 221:14 serious 191 8:3 84:8 85:19 86:22 141:14 158:11,12 144:18 158:4 see 71:5,5 96:6 32:14 136:15 88:7,12,13,19 158:15 176:5 168:19 191:15 100:18 101:20 serve 179:11 184:6 90:17,22 91:11,18 216:4 192:8 197:16 123:1 127:22 secsion 17:10,11 107:3,4,5,5,7 signal 90:3 171:3 situations 14:17 146:22 158:21 35:20 55:10 68:9 108:16,18 112:3 signals 90:7 84:3 91:2 126:14 208:9 222:6 229:2 77:3 207:2 229:16 112:11,20,21 significant 13:10 162:21 231:13 seeing 221:16 sesions 6:3 37:2 120:20 121:1,14 17:12 52:2 26:16 six 67:22,22 207:21 96:10,21 112:13 41:4 121:12 12:12 122:17 31:11 37:17 45:5 218:2 </th <th>v</th> <th>-</th> <th></th> <th></th> <th></th>	v	-			
secured 222:21 series 102:2 76:12,21 77:8,18 68:2 70:21 71:16 136:8 Security 20:6 121:18 211:13 80:1 81:2,8,22 119:7,7 141:5,6,7 94:12 142:19 seductive 221:14 seriously 18:3 84:8 85:19 86:22 119:7,7 141:5,6,7 94:12 142:19 seductive 221:14 seriously 18:3 84:8 85:19 86:22 119:7,7 141:5,6,7 94:12 142:19 seductive 221:14 seriously 18:3 84:8 85:19 86:22 141:14 158:11,12 144:18 158:4 see 71:5,5 96:6 32:14 136:15 serve 179:11 184:6 90:17,22 91:11,18 216:4 192:8 197:16 105:22 113:20 186:6 92:6,14 93:1,13 signal 90:3 171:3 situations 14:17 139:6 145:2 service 210:17 95:18 106:15 signal 90:7 84:3 91:2 126:14 208:9 222:6 229:2 77:3 207:2 229:16 112:11,20,21 signals 90:7 84:3 91:2 126:14 20:6 231:3 118:7 119:12 signals 90:7 size 52:15 69:22 220:17 96:10,21 112:13 41:4 121:21 122:17 113:11 3:10 162:21 231:13 114:14 121:21 122:17					8
Security 20:6 185:10serious 84:18 121:18 211:1378:4,9,17 79:12 80:1 81:2,8,2271:17,19 107:11 119:7,7 141:5,6,7situation 84:7 94:12 142:19seductive 221:14 seriously 18:3seriously 18:3 82:14 136:1580:1 81:2,8,22 84:8 85:19 86:22141:14 158:11,12 144:14 158:11,12144:18 158:4 192:15:15 176:5100:18 101:20 105:22 113:20serve 179:11 184:6 105:22 113:2090:17,22 91:11,18 		-		, , , , , , , , , , , , , , , , , , ,	
185:10121:18 211:13 seriously 18:380:1 81:2,8,22 84:8 85:19 86:22119:7,7 141:5,6,7 141:14 158:11,1294:12 142:19 144:18 158:4see 71:5,5 96:632:14 136:15 serve 179:11 184:684:8 85:19 86:22 90:17,22 91:11,18158:15 176:5 158:15 176:5168:19 191:15 192:8 197:16100:18 101:20 122:11 127:22serve 179:11 184:6 serve 210:17 123:1 127:2290:17,22 91:11,18 service 210:17 95:18 106:15216:4 sign 6:17 74:9 sign 6:17 74:9 sign 6:17 74:9 222:13220:17 222:13139:6 145:2 208:9 222:6 229:2session 17:10,11 77:3 207:2 229:16 203:6 231:3 96:10,21 112:13 41:4107:3,4,5,5,7 108:16,18 112:3 signed 6:19 215:6 significant 13:10 13:11 37:17 45:5situations 14:17 84:3 91:2 126:14 130:13 150:18 significant 13:10 162:21 231:13seen 77:14 80:22 96:10,21 112:13 96:10,21 112:13 20:11 12:13 20:11 12:13set 47:16 50:15 124:11 127:21 129:17 130:1,10 132:11 137:17 45:5 124:11 127:21 131:17 132:6,12 174:1size 52:15 69:22 174:1 172:1 22:22 26:16 132:11 147:2 188:16 151:19 129:7 146:4 138:14 139:7 151:19 129:7 146:4 138:14 139:7 138:14 139:7 141:8 114:11 143:7 129:22 228:8 151:19 129:22 125:2 134:14 135:16,19 138:16 151:12 129:21 147:7 129:13 13 148:8 149:9,11 131:17 132:6,12 174:1 174:					
seductive 221:14 see 71:5,5 96:6 100:18 101:20seriously 18:3 32:14 136:15 serve 179:11 184:684:8 85:19 86:22 90:17,22 91:11,18 90:17,22 91:11,18 216:4141:14 158:11,12 158:15 176:5144:18 158:4 168:19 191:15100:18 101:20 105:22 113:20186:6 186:692:6,14 93:1,13 92:6,14 93:1,13158:15 176:5 sign 61:17 74:9168:19 191:15 192:8 197:16123:1 127:22 228:158:21 208:22:6 229:2service 210:17 session 17:10,11 25:20 55:10 68:9 35:20 55:10 68:995:18 106:15 108:16,18 112:3signal 90:3 171:3 signal 90:3 171:3situations 14:17 84:3 91:2 126:14208:9 222:6 229:2 96:10,21 112:13 96:10,21 112:1335:20 55:10 68:9 230:6 231:3108:16,18 112:3 118:7 119:12signed 6:19 215:6 significant 13:10162:21 231:13 162:21 231:13seen 77:14 80:22 96:10,21 112:13 20:17 20:10,21 112:13sestion 6:3 37:2 41:4120:20 121:1,14 17:21 122:1717:21 25:2 26:16 31:11 37:17 45:5six 67:22,22 207:21 218:296:10,21 112:13 96:10,21 112:1341:4 112:21 122:1713:11 137:17 45:5 124:11 127:21218:2 47:20 108:7 47:20 108:7size 52:15 69:22 98:7 156:2220:17 96:10,21 112:13 113:7 115:1913:17 132:6,12 113:7 115:19174:1 131:17 132:6,12174:1 41:8 114:11 143:7segregation 70:13 select 41:15 43:13 select 41:15 43:13 150:16,22 153:2140:14,17 142:15 188:16size 23:17 sign-up 6:14 silver 194:7select 6164:16 172:17 163:6153:22 154:2 213:13148:8 149:9,11 150:2,5 151:6silver 194:7 sign-up 6:14 silver 194:7silver 68:15 s	•			,	
see 71:5,5 96:632:14 136:1588:7,12,13,19158:15 176:5168:19 191:15100:18 101:20serve 179:11 184:690:17,22 91:11,18216:4192:8 197:16105:22 113:20186:692:6,14 93:1,13sides 141:4210:13 220:17123:1 127:22service 210:1795:18 106:15sign 6:17 74:9222:13139:6 145:2session 17:10,11107:3,4,5,5,7signal 90:3 171:3situations 14:17146:22 158:2135:20 55:10 68:9108:16,18 112:3signed 6:19 215:6130:13 150:18208:9 222:6 229:277:3 207:2 229:16112:11,20,21signed 6:19 215:6130:13 150:18seeing 221:16230:6 231:3118:7 119:12significant 13:10162:21 231:13seen 77:14 80:22sessions 6:3 37:2120:20 121:1,1417:21 25:2 26:16six 67:22,22 207:2196:10,21 112:1341:4121:21 122:1731:11 37:17 45:5218:220:1776:10 91:3 105:4129:17 130:1,10132:11 147:298:7 156:22segregation 70:13113:7 115:19131:17 132:6,12174:1171:15 191:9seismic 115:1122:20 125:2134:14 135:16,19significantly 29:14192:22 228:8151:19129:7 146:4138:14 139:741:8 114:11 143:7size 23:17select 41:64153:22 154:2146:22 147:7sign-up 6:14siurrise 68:15172:17213:13150:16,22 153:2140:14,17 142:15188:16skip 196:21selection 52:4settle 71:9150:2,5 151:6similar 33:3 70:968:16,17 72:22 <t< td=""><td></td><td></td><td>, ,</td><td></td><td></td></t<>			, ,		
100:18 101:20 105:22 113:20serve 179:11 184:6 186:690:17,22 91:11,18 92:6,14 93:1,13 95:18 106:15216:4 sides 141:4192:8 197:16 210:13 220:17 222:13139:6 145:2 139:6 145:2session 17:10,11 35:20 55:10 68:9107:3,4,5,5,7 108:16,18 112:3sign 6:17 74:9 signal 90:3 171:3 signals 90:7situations 14:17 84:3 91:2 126:14146:22 158:21 208:9 222:6 229:2235:20 55:10 68:9 77:3 207:2 229:16108:16,18 112:3 112:11,20,21signals 90:7 signals 90:784:3 91:2 126:14 130:13 150:18seeing 221:16 96:10,21 112:13230:6 231:3 41:4118:7 119:12 120:20 121:1,14significant 13:10 17:21 25:2 26:16130:13 150:18 162:21 231:13seen 77:14 80:22 96:10,21 112:13sest 47:16 50:15 41:4124:11 127:21 121:21 122:1731:11 37:17 45:5 31:11 37:17 45:5218:2 size 52:15 69:22 220:1720:17 seismic 115:1 151:19131:17 132:6,12 131:17 13:6,12174:1 132:11 147:2171:15 191:9 192:22 228:8select 41:15 43:13 150:16,22 153:2134:14 135:16,19 150:2,5 15:16significantly 29:14 188:16size 23:17 sign-up 6:14 silver 194:7select 164:16 153:22 154:2146:22 147:7 168:12,15 169:13silver 194:7 130:16 140:16silver 194:7 130:16 140:16select 152:4 62:13 100:6,12settle 71:9 settle 71:9150:2,5 151:6 168:12,15 169:13 163:630:16 140:16 151:18 210:8,21silver 194:7 131:10 142:17sellafield 137:1,3 sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19131:10 142:17 169:14 191:18 <td></td> <td>v</td> <td></td> <td>,</td> <td></td>		v		,	
105:22 113:20186:692:6,14 93:1,13sides 141:4210:13 220:17123:1 127:22service 210:1795:18 106:15sign 6:17 74:9222:13139:6 145:2session 17:10,11107:3,4,5,5,7signal 90:3 171:3situations 14:17146:22 158:2135:20 55:10 68:9108:16,18 112:3signals 90:784:3 91:2 126:14208:9 222:6 229:277:3 207:2 229:16112:11,20,21signed 6:19 215:6130:13 150:18seeing 221:16230:6 231:3118:7 119:12significant 13:10162:21 231:13seen 77:14 80:22sessions 6:3 37:2120:20 121:1,1417:21 25:2 26:16six 67:22,22 207:2196:10,21 112:1341:4121:21 122:1731:11 37:17 45:5218:2125:6 165:8set 47:16 50:15124:11 127:2147:20 108:7size 52:15 69:2220:1776:10 91:3 105:4129:17 130:1,10132:11 147:298:7 156:22segregation 70:13113:7 115:19131:17 132:6,12174:1171:15 191:9select 41:15 43:13150:16,22 153:2134:14 135:16,19significantly 29:14192:22 228:8151:19129:7 146:4138:14 139:741:8 114:11 143:7sizes 23:17select 41:15 43:13150:16,22 153:2146:22 147:7sign-up 6:14situres 68:15select 10 52:4settle 71:9150:2,5 151:6similar 33:3 70:968:16,17 72:2262:13 100:6,12settle 71:9168:12,15 169:1370:10 79:7 111:19209:10163:6settling 70:14,16170:2,9 172:8130:16 140:16small 34:21 89:14<	see 71:5,5 96:6	32:14 136:15	88:7,12,13,19	158:15 176:5	168:19 191:15
123:1 127:22 139:6 145:2service 210:17 session 17:10,1195:18 106:15 107:3,4,5,5,7sign 6:17 74:9 signal 90:3 171:3222:13 situations 14:17 situations 14:17146:22 158:21 208:9 222:6 229:235:20 55:10 68:9 77:3 207:2 229:16108:16,18 112:3 112:11,20,21signal 90:3 171:3 signals 90:7situations 14:17 84:3 91:2 126:14seeing 221:16 96:10,21 112:13230:6 231:3 41:4112:11,20,21 12:12 1122:17signed 6:19 215:6 3ignificant 13:10162:21 231:13 significant 13:10seen 77:14 80:22 96:10,21 112:13sessions 6:3 37:2 41:4120:20 121:1,14 12:12 1122:1717:21 25:2 26:16 3i:11 37:17 45:5six 67:22,22 207:21 218:296:10,21 112:13 220:1741:4 76:10 91:3 105:4129:17 130:1,10 131:17 132:61,2132:11 147:2 174:1size 52:15 69:22 172:17segregation 70:13 151:19113:7 115:19 131:17 132:61,2174:1 131:17 132:61,2174:1 171:15 191:9select 164:16 153:22 153:2138:14 139:7 140:14,17 142:15significantly 29:14 188:16size 23:17 sizes 23:17select 164:16 153:22 154:2146:22 147:7 146:22 147:7silver 194:7 188:16silver 66:15 silver 194:7select 10 52:4 62:13 100:6,12settle 71:9 settles 216:19168:12,15 169:13 150:2,5 151:670:10 79:7 111:19 130:16 140:16sellafield 137:1,3 sellafield 137:1,371:9,13 71:9,13173:7,12 174:6,10 173:7,12 174:6,10130:16 140:16 151:18 210:8,21sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18 <td>100:18 101:20</td> <td>serve 179:11 184:6</td> <td>90:17,22 91:11,18</td> <td>216:4</td> <td>192:8 197:16</td>	100:18 101:20	serve 179:11 184:6	90:17,22 91:11,18	216:4	192:8 197:16
139:6 145:2 146:22 158:21 208:9 222:6 229:2session 17:10,11 35:20 55:10 68:9 230:6 231:3107:3,4,5,5,7 108:16,18 112:3 signals 90:7situations 14:17 84:3 91:2 126:14 130:13 150:18 signals 90:7seeing 221:16 96:10,21 112:13230:6 231:3 41:4118:7 119:12 120:20 121:1,14signals 90:7 signed 6:19 215:6130:13 150:18 162:21 231:13seen 77:14 80:22 96:10,21 112:13sessions 6:3 37:2 41:4120:20 121:1,14 121:21 122:1717:21 25:2 26:16 31:11 37:17 45:5six 67:22,22 207:21 218:296:10,21 112:13 125:6 165:8 220:1741:4 76:10 91:3 105:4129:17 130:1,10 131:17 132:6,12132:11 147:2 174:198:7 156:22 132:11 147:2segregation 70:13 151:19113:7 115:19 129:7 146:4138:14 139:7 138:14 139:741:8 114:11 143:7 41:8 114:11 143:7sizes 23:17 sizes 23:17 sizes 23:17selected 164:16 153:22 154:2146:22 147:7 150:2,5 151:6significantly 29:14 significantly 29:14sizes 23:17 sizes 23:17selection 52:4 62:13 100:6,12settle 71:9 settles 216:19 163:6150:2,5 151:6 172:17silver 194:7 silver 194:7silurries 68:15 silur 33:3 70:9 70:10 79:7 111:19 209:10163:6 Settling 70:14,16 71:9,13 settling 70:14,16170:2,9 172:8 173:7,12 174:6,10130:16 140:16 151:18 210:8,21 simple 63:14,19131:10 142:17 169:14 191:18	105:22 113:20		92:6,14 93:1,13	sides 141:4	
146:22 158:21 208:9 222:6 229:235:20 55:10 68:9 77:3 207:2 229:16108:16,18 112:3 112:11,20,21signals 90:7 signed 6:19 215:684:3 91:2 126:14 130:13 150:18seeing 221:16 96:10,21 112:13230:6 231:3 41:4118:7 119:12 120:20 121:1,14signed 6:19 215:6 significant 13:10162:21 231:13 17:21 25:2 26:1696:10,21 112:13 96:10,21 112:1341:4 41:4121:21 122:17 121:21 122:1731:11 37:17 45:5 31:11 37:17 45:5six 67:22,22 207:21 218:2125:6 165:8 220:17set 47:16 50:15 76:10 91:3 105:4129:17 130:1,10 131:17 132:6,12132:11 147:2 174:198:7 156:22 98:7 156:22segregation 70:13 151:19113:7 115:19 129:7 146:4138:14 139:7 138:14 139:7174:1 41:8 114:11 143:7171:15 191:9 192:22 228:8size 41:15 43:13 150:16,22 153:2140:14,17 142:15 148:8 149:9,11signerup 6:14 silver 194:7 silver 194:7silver 194:7 silver 194:7selected 164:16 153:22 154:2150:2,5 151:6 168:12,15 169:13 163:6settling 70:14,16 70:10 79:7 111:1970:10 79:7 111:19 130:16 140:16 151:18 210:8,21 130:16 140:16small 34:21 89:14 131:10 142:17 169:14 191:18	123:1 127:22	service 210:17	95:18 106:15	sign 6:17 74:9	222:13
208:9 222:6 229:277:3 207:2 229:16112:11,20,21signed 6:19 215:6130:13 150:18seeing 221:16230:6 231:3118:7 119:12significant 13:10162:21 231:13seen 77:14 80:22sessions 6:3 37:2120:20 121:1,1417:21 25:2 26:16six 67:22,22 207:2196:10,21 112:1341:4121:21 122:1731:11 37:17 45:5218:2125:6 165:8set 47:16 50:15124:11 127:2147:20 108:7size 52:15 69:22220:1776:10 91:3 105:4129:17 130:1,10132:11 147:298:7 156:22segregation 70:13113:7 115:19131:17 132:6,12174:1171:15 191:9seismic 115:1122:20 125:2134:14 135:16,19significantly 29:14192:22 228:8151:19129:7 146:4138:14 139:741:8 114:11 143:7size 32:17select 41:15 43:13150:16,22 153:2140:14,17 142:15188:16skip 196:21selection 52:4settle 71:9150:2,5 151:6sillar 33:3 70:968:16,17 72:2262:13 100:6,12settles 216:19168:12,15 169:1370:10 79:7 111:19209:10163:6settling 70:14,16170:2,9 172:8130:16 140:16small 34:21 89:14Sellafield 137:1,371:9,1371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	139:6 145:2	session 17:10,11		signal 90:3 171:3	situations 14:17
seeing 221:16230:6 231:3118:7 119:12significant 13:10162:21 231:13seen 77:14 80:22sessions 6:3 37:2120:20 121:1,1417:21 25:2 26:16six 67:22,22 207:2196:10,21 112:1341:4121:21 122:1731:11 37:17 45:5218:2125:6 165:8set 47:16 50:15124:11 127:2147:20 108:7size 52:15 69:22220:1776:10 91:3 105:4129:17 130:1,10132:11 147:298:7 156:22segregation 70:13113:7 115:19131:17 132:6,12174:1171:15 191:9seismic 115:1122:20 125:2134:14 135:16,19significantly 29:14192:22 228:8151:19129:7 146:4138:14 139:741:8 114:11 143:7sizes 23:17select 41:15 43:13150:16,22 153:2140:14,17 142:15188:16skip 196:21select 164:16153:22 154:2146:22 147:7188:16slurrise 68:15172:17213:13148:8 149:9,11silver 194:7slurrise 68:15selection 52:4settle 71:9150:2,5 151:6similar 33:3 70:968:16,17 72:2262:13 100:6,12settling 70:14,16170:2,9 172:8130:16 140:16small 34:21 89:14163:671:9,1371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	146:22 158:21	35:20 55:10 68:9	108:16,18 112:3	signals 90:7	84:3 91:2 126:14
seen 77:14 80:22 96:10,21 112:13sessions 6:3 37:2 41:4120:20 121:1,14 121:21 122:1717:21 25:2 26:16 31:11 37:17 45:5six 67:22,22 207:21 218:2125:6 165:8 220:17set 47:16 50:15 76:10 91:3 105:4124:11 127:21 129:17 130:1,1047:20 108:7 132:11 147:2size 52:15 69:22segregation 70:13 151:19113:7 115:19 122:20 125:2134:14 135:16,19 131:17 132:6,12174:1 171:15 191:9171:15 191:9 192:22 228:8select 41:15 43:13 150:16,22 153:2140:14,17 142:15 146:4188:16 sign-up 6:14 silver 194:7size 52:17 98:7 156:22selection 52:4 62:13 100:6,12settle 71:9 settle 71:9150:2,5 151:6 168:12,15 169:13silver 194:7 70:10 79:7 111:19slurry 66:22 68:5 68:16,17 72:22163:6 Settling 70:14,16 163:6170:2,9 172:8 172:17130:16 140:16 151:18 210:8,21 131:10 142:17small 34:21 89:14 131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	208:9 222:6 229:2		112:11,20,21	0	130:13 150:18
96:10,21 112:13 125:6 165:8 220:1741:4 set 47:16 50:15 76:10 91:3 105:4121:21 122:17 124:11 127:21 129:17 130:1,1031:11 37:17 45:5 47:20 108:7 132:11 147:2218:2 size 52:15 69:22segregation 70:13 seismic 115:1 151:19113:7 115:19 122:20 125:2129:17 130:1,10 131:17 132:6,12132:11 147:2 174:198:7 156:22 174:1select 41:15 43:13 select 41:15 43:13150:16,22 153:2 150:16,22 153:2134:14 135:16,19 140:14,17 142:15significantly 29:14 188:16192:22 228:8 significantly 29:14select 61 64:16 172:17153:22 154:2 213:13140:14,17 142:15 150:2,5 151:6188:16 sign-up 6:14 silver 194:7size 68:15 slurry 66:22 68:5selection 52:4 62:13 100:6,12settle 71:9 settles 216:19 163:6168:12,15 169:13 170:2,9 172:870:10 79:7 111:19 130:16 140:16 151:18 210:8,21 simple 63:14,19small 34:21 89:14 131:10 142:17 169:14 191:18	seeing 221:16		118:7 119:12	0	162:21 231:13
125:6 165:8 220:17set 47:16 50:15 76:10 91:3 105:4124:11 127:21 129:17 130:1,1047:20 108:7 132:11 147:2size 52:15 69:22 98:7 156:22segregation 70:13113:7 115:19 122:20 125:2131:17 132:6,12 134:14 135:16,19174:1 174:1171:15 191:9 192:22 228:8select 41:15 43:13129:7 146:4 153:22 154:2138:14 139:7 146:42 137:17138:14 139:7 188:16significantly 29:14 41:8 114:11 143:7192:22 228:8 significantly 29:14select 41:15 43:13150:16,22 153:2 150:16,22 153:2140:14,17 142:15 146:22 147:7sign-up 6:14 silver 194:7silver i96:21 slurry 66:22 68:5selection 52:4settle 71:9 settles 216:19150:2,5 151:6 168:12,15 169:13silver 194:7 70:10 79:7 111:19 209:10settle,17 72:22163:6settling 70:14,16 71:9,13170:2,9 172:8 173:7,12 174:6,10 174:13 178:13130:16 140:16 151:18 210:8,21 simple 63:14,19small 34:21 89:14 131:10 142:17		sessions 6:3 37:2	120:20 121:1,14		six 67:22,22 207:21
220:1776:10 91:3 105:4129:17 130:1,10132:11 147:298:7 156:22segregation 70:13113:7 115:19131:17 132:6,12174:1171:15 191:9seismic 115:1122:20 125:2134:14 135:16,19significantly 29:14192:22 228:8151:19129:7 146:4138:14 139:741:8 114:11 143:7sizes 23:17select 41:15 43:13150:16,22 153:2140:14,17 142:15188:16sign-up 6:14select d 164:16153:22 154:2146:22 147:7188:16silver 194:7selection 52:4settle 71:9150:2,5 151:6similar 33:3 70:968:16,17 72:2262:13 100:6,12settles 216:19168:12,15 169:1370:10 79:7 111:19209:10selafield 137:1,371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	96:10,21 112:13	41:4		31:11 37:17 45:5	218:2
segregation 70:13113:7 115:19131:17 132:6,12174:1171:15 191:9seismic 115:1122:20 125:2134:14 135:16,19significantly 29:14192:22 228:8151:19129:7 146:4138:14 139:741:8 114:11 143:7sizes 23:17select 41:15 43:13150:16,22 153:2140:14,17 142:15188:16skip 196:21select d 164:16153:22 154:2146:22 147:7sign-up 6:14slurries 68:15172:17213:13148:8 149:9,11silver 194:7slurry 66:22 68:5selection 52:4settle 71:9150:2,5 151:6similar 33:3 70:968:16,17 72:2262:13 100:6,12settles 216:19168:12,15 169:1370:10 79:7 111:19209:10163:6settling 70:14,16170:2,9 172:8130:16 140:16small 34:21 89:14Sellafield 137:1,371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	125:6 165:8	set 47:16 50:15	124:11 127:21	47:20 108:7	size 52:15 69:22
seismic 115:1122:20 125:2134:14 135:16,19significantly 29:14192:22 228:8151:19129:7 146:4138:14 139:741:8 114:11 143:7sizes 23:17select 41:15 43:13150:16,22 153:2140:14,17 142:15188:16sizes 23:17select d 164:16153:22 154:2146:22 147:7188:16sign-up 6:14172:17213:13148:8 149:9,11silver 194:7slurries 68:15selection 52:4settle 71:9150:2,5 151:6similar 33:3 70:968:16,17 72:2262:13 100:6,12settles 216:19168:12,15 169:1370:10 79:7 111:19209:10163:6settling 70:14,16170:2,9 172:8130:16 140:16small 34:21 89:14Sellafield 137:1,371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	220:17	76:10 91:3 105:4	129:17 130:1,10	132:11 147:2	98:7 156:22
151:19129:7 146:4138:14 139:741:8 114:11 143:7sizes 23:17select 41:15 43:13150:16,22 153:2140:14,17 142:15188:16sixp 196:21selected 164:16153:22 154:2146:22 147:7188:16sip 196:21172:17213:13148:8 149:9,11silver 194:7silurries 68:15selection 52:4settle 71:9150:2,5 151:6siller 33:3 70:968:16,17 72:2262:13 100:6,12settles 216:19168:12,15 169:1370:10 79:7 111:19209:10163:6settling 70:14,16170:2,9 172:8130:16 140:16small 34:21 89:14Sellafield 137:1,371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	segregation 70:13	113:7 115:19	131:17 132:6,12	174:1	171:15 191:9
select 41:15 43:13150:16,22 153:2140:14,17 142:15188:16skip 196:21selected 164:16153:22 154:2146:22 147:7sign-up 6:14slurries 68:15172:17213:13148:8 149:9,11silver 194:7slurry 66:22 68:5selection 52:4settle 71:9150:2,5 151:6similar 33:3 70:968:16,17 72:2262:13 100:6,12settles 216:19168:12,15 169:1370:10 79:7 111:19209:10163:6settling 70:14,16170:2,9 172:8130:16 140:16small 34:21 89:14Sellafield 137:1,371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	seismic 115:1	122:20 125:2	134:14 135:16,19	significantly 29:14	192:22 228:8
selected 164:16 172:17153:22 154:2 213:13146:22 147:7 148:8 149:9,11sign-up 6:14 silver 194:7slurries 68:15 slurry 66:22 68:5selection 52:4 62:13 100:6,12 163:6settle 71:9 settling 70:14,16150:2,5 151:6 168:12,15 169:13silver 194:7 similar 33:3 70:9settle 68:17 72:22 209:10Sellafield 137:1,3 sending 72:6r1:9,13 seven 11:13 129:20173:7,12 174:6,10 174:13 178:13sign-up 6:14 silver 194:7 similar 33:3 70:9slurries 68:15 slurry 66:22 68:5 68:16,17 72:22130:16 140:16 151:18 210:8,21 simple 63:14,19small 34:21 89:14 169:14 191:18	151:19	129:7 146:4	138:14 139:7	41:8 114:11 143:7	sizes 23:17
172:17213:13148:8 149:9,11silver 194:7slurry 66:22 68:5selection 52:4settle 71:9150:2,5 151:6similar 33:3 70:968:16,17 72:2262:13 100:6,12settles 216:19168:12,15 169:1370:10 79:7 111:19209:10163:6settling 70:14,16170:2,9 172:8130:16 140:16small 34:21 89:14Sellafield 137:1,371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	select 41:15 43:13	150:16,22 153:2	140:14,17 142:15	188:16	skip 196:21
selection 52:4 62:13 100:6,12 163:6settle 71:9 settles 216:19 settling 70:14,16150:2,5 151:6 168:12,15 169:13 170:2,9 172:8similar 33:3 70:9 70:10 79:7 111:19 130:16 140:1668:16,17 72:22 209:10Sellafield 137:1,3 sending 72:6settle 71:9 settles 216:19 settling 70:14,16150:2,5 151:6 168:12,15 169:13 170:2,9 172:8similar 33:3 70:9 70:10 79:7 111:19 130:16 140:1668:16,17 72:22 209:10Sellafield 137:1,3 sending 72:6settle 71:9 settles 216:19 174:13 178:13151:18 210:8,21 simple 63:14,19131:10 142:17 169:14 191:18	selected 164:16	153:22 154:2	146:22 147:7	sign-up 6:14	slurries 68:15
62:13 100:6,12 163:6settles 216:19 settling 70:14,16168:12,15 169:13 170:2,9 172:870:10 79:7 111:19 130:16 140:16209:10 small 34:21 89:14Sellafield 137:1,3 sending 72:6settles 216:19 settling 70:14,16168:12,15 169:13 170:2,9 172:870:10 79:7 111:19 130:16 140:16209:10 small 34:21 89:14Sellafield 137:1,3 sending 72:611:13 129:20174:13 178:135imple 63:14,19109:14 191:18	172:17	213:13	148:8 149:9,11	silver 194:7	slurry 66:22 68:5
163:6 Sellafield 137:1,3 sending 72:6settling 70:14,16 71:9,13170:2,9 172:8 173:7,12 174:6,10130:16 140:16 151:18 210:8,21 simple 63:14,19small 34:21 89:14 131:10 142:17 169:14 191:18	selection 52:4	settle 71:9	150:2,5 151:6		68:16,17 72:22
Sellafield 137:1,371:9,13173:7,12 174:6,10151:18 210:8,21131:10 142:17sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	62:13 100:6,12	settles 216:19	168:12,15 169:13	70:10 79:7 111:19	209:10
sending 72:6seven 11:13 129:20174:13 178:13simple 63:14,19169:14 191:18	163:6	settling 70:14,16	170:2,9 172:8	130:16 140:16	small 34:21 89:14
	Sellafield 137:1,3	71:9,13	173:7,12 174:6,10	151:18 210:8,21	131:10 142:17
senior 20:2 204:22 226:9 191:10,13 193:11 83:7 108:21 155:3 smaller 73:9,10,12	sending 72:6	seven 11:13 129:20	174:13 178:13	simple 63:14,19	169:14 191:18
	senior 20:2	204:22 226:9	191:10,13 193:11	83:7 108:21 155:3	smaller 73:9,10,12

75:20 131:9 161:3174:21147:11 186:473:1 89:18 94:3Stokes 36:5small-scale 87:7space 86:13 138:19spot 196:10,17101:18 125:13storage 37:9 70:smart 128:13span 121:17 123:4sprays 230:13130:19 184:18stored 10:12society 27:4 169:21spaning 28:19sprage 39:10spread 167:20185:6 190:11story 107:11 205solicited 33:13spark 137:14186:12225:3straight 109:1soliciting 219:10sparse 189:22stabilizing 154:15started 114:8straightforwardsolids 71:9 73:3,6speak 6:9,21stable 12:6 205:21starting 13:11 16:7strain 101:14solution 12:9112:12 196:13staff 1:18 3:4 4:19starts 173:18105:16 106:4,6216:10 229:14215:6 224:1424:5 30:12 32:2196:12 214:16106:14,17 155:solutions 14:18speaker 215:7,1135:22,22 36:6,11start-up 213:6starias 29:12 89solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,solving 30:8 170:17speaking 224:1950:8 51:7,12218:11 227:13102:5 106:12
smart 128:13 society 27:4 169:21 software 32:18,19 solely 10:18spanning 28:19 sparge 39:10sprays 230:13 spread 167:20130:19 184:18 185:6 190:11stored 10:12 story 107:11 205solely 10:18 solicited 33:13 soliciting 219:10spark 137:14 sparse 189:22186:12 sprinkling 154:15185:6 190:11 191:19 198:1 225:3straight 109:1 straightforward 76:22soliciting 219:10 solid 128:4 solids 71:9 73:3,6 216:10 229:14spark 6:9,21 215:6 224:14stable 12:6 205:21 24:5 30:12 32:2starting 13:11 16:7 85:1strain 101:14 102:11,19 103: 105:16 106:4,6solution 12:9 216:10 229:14112:12 196:13 215:6 224:14staff 1:18 3:4 4:19 24:5 30:12 32:2starts 173:18 196:12 214:16105:16 106:4,6 105:16 106:4,6solutions 14:18 220:5 221:6,17 solve 178:6speaker 215:7,11 219:835:22,22 36:6,11 37:3,6,11,14state 6:11 20:4 31:2 89:18,19 90:5,
society 27:4 169:21 software 32:18,19 solely 10:18spanning 28:19 sparge 39:10 sparge 39:10spread 167:20 spreadsheets185:6 190:11 191:19 198:1 222:18story 107:11 205 222:18solely 10:18 solicited 33:13spark 137:14 sparse 189:22186:12 sprinkling 154:15225:3straight 109:1 started 114:8soliciting 219:10 solids 71:9 73:3,6 216:10 229:14spark 6:9,21 215:6 224:14stable 12:6 205:21 Staff 1:18 3:4 4:19starting 13:11 16:7 starts 173:18strain 101:14 102:11,19 103: staff 1:18 3:4 4:19solutions 14:18 220:5 221:6,17 solve 178:6speaker 215:7,11 219:835:22,22 36:6,11 37:3,6,11,14start e 6:11 20:4 31:2 start 47:20 48:8strains 29:12 89 s9:18,19 90:5,
software 32:18,19sparge 39:10spreadsheets191:19 198:1222:18solely 10:18spark 137:14186:12225:3straight 109:1solicited 33:13sparks 138:17spinkling 154:15started 114:8straightforwardsoliciting 219:10sparse 189:22stabilizing 12:9202:2276:22solid 128:4190:6stable 12:6 205:21starting 13:11 16:7strain 101:14solids 71:9 73:3,6speak 6:9,21STACY 1:2385:1102:11,19 103:solution 12:9112:12 196:13staff 1:18 3:4 4:19starts 173:18105:16 106:4,6216:10 229:14215:6 224:1424:5 30:12 32:2196:12 214:16106:14,17 155:solutions 14:18speaker 215:7,1135:22,22 36:6,11start -up 213:6155:12 158:5,6220:5 221:6,17219:837:3,6,11,14state 6:11 20:4 31:2strains 29:12 89solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,
solely 10:18spark 137:14186:12225:3straight 109:1solicited 33:13sparks 138:17sparks 138:17spinkling 154:15started 114:8straightforwardsoliciting 219:10sparse 189:22stabilizing 12:9202:2276:22solid 128:4190:6stable 12:6 205:21starting 13:11 16:7strain 101:14solids 71:9 73:3,6speak 6:9,21STACY 1:2385:1102:11,19 103:solution 12:9112:12 196:13staff 1:18 3:4 4:19starts 173:18105:16 106:4,6216:10 229:14215:6 224:1424:5 30:12 32:2196:12 214:16106:14,17 155:solutions 14:18speaker 215:7,1135:22,22 36:6,11start-up 213:6155:12 158:5,6220:5 221:6,17219:837:3,6,11,14state 6:11 20:4 31:2strains 29:12 89solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,1
solicited 33:13 soliciting 219:10sparks 138:17 sparse 189:22sprinkling 154:15 stabilizing 12:9started 114:8 202:22straightforward 76:22solid 128:4 solids 71:9 73:3,6190:6 speak 6:9,21stable 12:6 205:21 STACY 1:23starting 13:11 16:7 85:1strain 101:14 102:11,19 103:solution 12:9 216:10 229:14112:12 196:13 215:6 224:14staff 1:18 3:4 4:19 24:5 30:12 32:2starts 173:18 196:12 214:16106:14,17 155: 105:16 106:4,6solutions 14:18 220:5 221:6,17 solve 178:6speaker 215:7,11 219:835:22,22 36:6,11 37:3,6,11,14start of 213:6 state 6:11 20:4 31:2strains 29:12 89 89:18,19 90:5,1
soliciting 219:10sparse 189:22stabilizing 12:9202:2276:22solid 128:4190:6stabil 2:6 205:21starting 13:11 16:7strain 101:14solids 71:9 73:3,6speak 6:9,21STACY 1:2385:1102:11,19 103:solution 12:9112:12 196:13staff 1:18 3:4 4:19starts 173:18105:16 106:4,6216:10 229:14215:6 224:1424:5 30:12 32:2196:12 214:16106:14,17 155:solutions 14:18speaker 215:7,1135:22,22 36:6,11start-up 213:6155:12 158:5,6220:5 221:6,17219:837:3,6,11,14state 6:11 20:4 31:2strains 29:12 89solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,1
solid 128:4190:6stable 12:6 205:21starting 13:11 16:7strain 101:14solids 71:9 73:3,6speak 6:9,21STACY 1:2385:1102:11,19 103:solution 12:9112:12 196:13staff 1:18 3:4 4:19starts 173:18105:16 106:4,6216:10 229:14215:6 224:1424:5 30:12 32:2196:12 214:16106:14,17 155:solutions 14:18speaker 215:7,1135:22,22 36:6,11start-up 213:6155:12 158:5,6220:5 221:6,17219:837:3,6,11,14state 6:11 20:4 31:2strains 29:12 89solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,1
solids 71:9 73:3,6 solution 12:9speak 6:9,21 112:12 196:13 215:6 224:14STACY 1:23 staff 1:18 3:4 4:19 24:5 30:12 32:285:1 starts 173:18102:11,19 103: 105:16 106:4,6216:10 229:14 solutions 14:18 220:5 221:6,17 solve 178:6215:6 224:14 219:824:5 30:12 32:2 35:22,22 36:6,11 37:3,6,11,1485:1 starts 173:18 196:12 214:16102:11,19 103: 105:16 106:4,6solutions 14:18 220:5 221:6,17 solve 178:6speaker 215:7,11 219:835:22,22 36:6,11 37:3,6,11,14start-up 213:6 state 6:11 20:4 31:2155:12 158:5,6 strains 29:12 89 89:18,19 90:5,1
solution 12:9112:12 196:13staff 1:18 3:4 4:19starts 173:18105:16 106:4,6216:10 229:14215:6 224:1424:5 30:12 32:2196:12 214:16106:14,17 155:solutions 14:18speaker 215:7,1135:22,22 36:6,11start-up 213:6155:12 158:5,6220:5 221:6,17219:837:3,6,11,14state 6:11 20:4 31:2strains 29:12 89solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,1
216:10 229:14215:6 224:1424:5 30:12 32:2196:12 214:16106:14,17 155:solutions 14:18speaker 215:7,1135:22,22 36:6,11start-up 213:6155:12 158:5,6220:5 221:6,17219:837:3,6,11,14state 6:11 20:4 31:2strains 29:12 89solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,12
solutions 14:18 220:5 221:6,17speaker 215:7,11 219:835:22,22 36:6,11 37:3,6,11,14start-up 213:6 state 6:11 20:4 31:2155:12 158:5,6 state 31:2solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,10
220:5 221:6,17219:837:3,6,11,14state 6:11 20:4 31:2strains 29:12 89solve 178:6speakers 6:5,10,1143:14 47:20 48:8114:12 126:589:18,19 90:5,10
solve 178:6 speakers 6:5,10,11 43:14 47:20 48:8 114:12 126:5 89:18,19 90:5,
solving 30:8 170:17 speaking 224:19 50:8 51:7,12 218:11 227:13 102:5 106:12
225:17 special 77:3 92:16 52:12,18 53:9,19 stated 5:21 23:19 111:7 116:21
somebody 101:7 specialists 143:20 57:14 207:17 67:1 185:20 128:17 129:14
160:1 144:7,8 215:2 225:4 statement 32:4 159:14 171:5,6
somebody's 121:8 specialized 169:6 staff's 47:11 150:12 199:6 172:5
somewhat 75:20 specific 27:2 33:6 stages 31:6 63:2 statements 3:10 strategies 180:6
228:10 44:18 57:12 60:16 stagnate 22:6 28:15 6:22 209:14 strategy 16:19 1
soon 5:11 133:14 61:1 68:20 75:11 stainless 27:13 States 1:1 139:19 17:13 23:11 24
sorry 102:16 182:176:10 77:16130:15,16state-of-the-art24:17,20 28:21
183:9 203:7 224:4 104:11 128:9 stand 198:10 113:4 36:18,22 39:21
sort 128:3 131:21 134:2,13,21 213:15 static 179:6 40:8,13 41:9,12
137:11 162:19 168:6,6 standard 44:15 stating 36:1 44:13 47:6,8,13
sorting 83:8 177:19 181:8 106:16 115:10,11 stations 40:2 47:22 48:4,6,10
sound 170:15198:18115:15 125:14statue 7:2248:12 50:21 15
173:21,22specifically 36:18132:19 139:12,17statutory 7:19 9:7180:14 218:22
source 21:19 22:9 65:14 66:14 76:11 157:2 177:11 10:1,7 15:6 230:9 231:5
39:5,6 62:21 118:19 153:8 178:15 183:22 stay 157:17 stratification 73
133:12 182:17 specificity 44:1 186:9 Staying 91:6 111:16
191:19 196:6,7 specifics 25:20 standardized 113:8 144:10 stratified 72:13
sources 39:7,19 specified 32:21 standards 30:22 steel 27:13 130:14 stream 55:20,21
134:13 137:8,11 specify 44:18 33:8 49:13 50:11 130:16 66:6
139:13,21,22126:17 177:1050:16 120:16step 124:3 141:3streaming 5:8
194:17 204:10 spectral 228:11 139:18 186:2 178:11 strength 179:8
sourcing 39:15 spectrum 123:4 218:13 steps 35:14 stress 67:19 102
south 227:13 speed 86:11 standing 198:11 Steve 20:5 124:10 126:2,5
Southwest 27:7 spending 124:1 standpoint 24:16 Steven 36:5 143:11
88:15 105:20 spends 123:17 98:7 112:15 stewardship stresses 29:11 52
108:5 109:5,9 spent 76:3 212:18 165:16 221:20 111:2,5,5 116:2
110:6,12 116:6,9 spill 211:10 Stang 3:17 223:5,6 stochastic 196:12 117:19 126:14,
183:5 212:2 spoken 207:22 223:9,16 224:2,7 196:14 127:7 128:17
so-called 131:5 sponsor 198:16 224:9 stochastically 129:14 141:17,
168:21 170:15 sponsored 137:4 start 66:10 72:14 196:19 150:12

	1	1		
stressors 101:2	suffer 10:20	surrounds 219:19	111:18 167:1	147:4,5,6,8,18
strong 89:9 168:1	suffers 101:13	Susan 224:14	takes 83:8 133:1	149:4 160:20
strove 171:2	154:19	suspected 12:2	185:5 204:6,15	161:6,15,19 162:3
structural 42:7	sufficient 21:22	sweep 100:13	207:7 210:11	168:9 171:11
113:11,15 147:22	22:6 43:22 73:15	symbols 75:22	talent 205:8	172:3 181:15
structure 28:9	sufficiently 33:21	symposia 82:9	talented 205:8	185:19 195:20
structures 14:5	Suffridge 36:6	system 18:13 25:19	talk 66:5 77:1	198:15,17,21
studied 82:1	suggested 62:14	28:9 29:16 42:1	105:10 106:3,4,11	199:9 205:9
studies 57:11 212:4	suggests 177:8	44:8 49:4 64:8	120:21 143:3	231:21
227:7	suitable 12:7	68:19 70:6 79:11	147:3 191:14	team's 29:1,3,5
stuff 121:7 182:3	summarize 29:3	81:5 83:13 87:9	talked 70:1,2,13	41:13 42:21 127:5
stumble 65:19	183:17	100:9,22 101:20	73:14 108:1,4	Tech 108:4,19
subcommittee	summarized 41:14	112:1 131:19,20	111:15 130:2	147:9
178:14	summary 208:5	150:14 171:20	132:22 142:15	technical 1:19 4:17
subcontractors	sumps 211:9	226:21	147:12 165:19	7:5 9:18 14:10,13
50:19	sunshine 5:6	systems 14:5,8 17:5	175:13 191:7	28:20 33:7,13
subduction 228:5	222:12	22:2 26:9 31:12	209:5 212:17	35:5,14 82:13
subject 7:20 33:15	Super 90:2	40:6 66:21 71:3	talking 64:5 68:8	120:5 164:13
82:10 135:18	superficial 122:2	79:2 99:11 108:21	70:18 74:12,13	183:19 184:1,5,9
150:1 169:8	superior 25:14	109:1,2,7,22	80:3 106:12,13	186:6 207:8 217:9
186:18 190:1	supplement 128:3	110:11 111:12	137:2 149:14	217:16 231:16
225:5	support 20:4 31:14	113:5 116:2,7	150:3 191:15	technically 20:14
subjected 77:20	100:7 118:9	130:18 140:4	212:19 226:12	45:15 51:10
168:3	182:15 201:19	143:11 144:4,6	tank 11:1,14 12:2	230:17
subjects 7:6	204:17 205:6,15	145:14 219:22	16:17 17:6,16	technology 27:6
submit 8:17 54:22	214:18	224:22 227:11	20:16 21:13,16,17	54:18 96:16 111:3
161:18 199:3,6	supported 24:17	system's 101:20	21:19 25:18 37:20	127:16
219:6 223:3 224:5	42:12 179:2	T	38:7 57:11 59:13	tell 33:15 34:3
submittal 178:10	181:13		64:8 66:3,7,8 72:4	99:19 113:12
submitted 75:20	supporting 23:21	T 114:6	111:18 153:12,13	126:11 158:6
181:7	47:17	table 6:13 161:4	155:5 184:4 214:8	174:14,17 188:1
submitting 35:13	supportive 230:11	tables 163:22 164:3 164:4	216:20 220:16	191:11 204:21
Subsequently 42:9	supports 101:4		229:15 230:19	222:18
substantial 65:9	205:21	tails 188:7 190:8 take 9:14 15:15	tanks 10:13,14 11:9	telling 86:19
76:3 82:13 99:10	sure 61:10 65:19,20	32:13 53:22 55:5	11:10 12:3,6	tells 89:17 99:22
117:13 137:19	77:16 80:16 93:10	93:4 94:8 100:20	37:10 38:2 72:1,7	125:9
138:6 139:19	112:7,9 120:11,15	101:19 104:18	136:22 164:18	temperature 56:1
169:20	123:10 125:19	109:18 129:16	216:18 226:5,7	134:16 135:9
substantially 169:1	133:20 150:11,21	132:16 137:22	target 34:1 35:10	temperatures
substantiated 175:19	152:14 155:16	132:10 137:22	tasked 197:3	38:17 96:6 145:13
substantiates 176:1	164:5 172:15 206:3 224:13	159:8 167:9 182:2	Taylor's 170:16 team 18:20,21 28:2	tenacious 207:11 tend 73:9,12
substantive 137:10	200:5 224:15	192:2,22 210:16	28:17 29:4 30:9	tends 221:5
137:18 138:5	surface 217:5	211:2,14 213:10	31:19 41:1,6,18	tens 115:2
successful 11:4	surges 140:5	217:10 220:3	45:11 46:22 58:21	tension 205:2
successfully 222:20	surprises 111:20	221:5	65:11 117:14,18	ten-fold 131:15
successfully 222.20 suddenly 217:8	surround 219:11	taken 41:4 46:20	119:1 120:6 134:3	term 227:17
Suuciny 217.0	5411 Vulla 217.11		117.1 120.0 134.3	
1	I	l	I	1

	_		_	_
termed 142:7	tests 52:20 70:2	111:21 112:4	226:3 227:21	227:8,14
terminology 164:7	105:18,18,19	113:2,22 114:7,10	thinking 86:9	timely 15:16
terms 52:10 55:18	106:2 109:8	115:10,13 116:15	115:8 124:2,11	times 28:6 93:20
60:10 61:20 65:2	149:22 197:2,4	116:19,22 121:6	167:10 193:4	102:20 103:19
66:13 68:3 69:14	Texas 27:8	121:11 125:9,10	third 17:10 38:20	132:1,3,4 159:10
69:15 83:18,18	thank 15:16 32:6	125:11,12,21	42:2 162:3	Timothy 1:19 4:17
92:8 111:4 117:11	34:17 35:17,18,18	126:3,9,10,11,22	this.4 185:7	tired 221:16
131:18 134:21	53:16 68:22 71:21	127:13 137:6	thought 146:3	tireless 185:10
153:7 163:5	75:5,14 93:5,7	140:1 150:6	193:6 231:21	title 6:11 8:2
166:10,17 167:2	95:10 102:17	155:12 159:21	thousand 114:18	titles 107:6
172:4 175:15	106:22 117:3	166:6 175:11	166:21 167:7	TNO 85:6
188:11 192:15	119:8,21 120:19	179:8,10 189:6	thousands 197:9	today 18:16,22
211:2	124:7 127:9	191:6 192:4 193:1	thousandths 106:8	29:1 75:5 145:1
terrible 87:5	132:21 135:6,13	194:1 199:12	threats 12:10 140:8	163:13 171:9
test 26:21 27:9,19	145:7 146:20	201:2,12 203:10	three 1:10 6:2	184:15 216:3
44:16 89:1 105:17	149:19 151:5	203:14 206:6	20:10,22 38:6	219:21 224:18
124:8 125:22	152:3,7 189:3	think 60:13 69:7	48:3 93:8 96:8	today's 4:22 18:19
138:22 147:10	197:20 199:10	72:4 73:8 75:18	101:13 103:14,19	231:3
151:12 173:9,11	209:2 214:19	76:17 77:14 78:4	106:4,13 116:5	told 72:1 223:16
173:12 182:6,10	215:1,14 219:4,5	80:1 83:18 86:6	122:11,12 146:11	tolerate 60:11
182:12,12	219:9 223:1,2	87:20,21 89:1	149:3 161:19	tool 27:1 28:1
tested 60:2 149:17	224:10 225:9	92:6,14,21 96:13	192:22	48:14 80:12 83:2
testified 198:20	228:16,18 231:14	108:16,17 110:2	threshold 187:22	97:15 99:19
231:17	231:20,20 232:5	112:2 113:1 116:9	throwing 136:14	100:11 101:11
testify 29:1	Thankfully 222:10	116:18 117:7,17	thrown 121:19	135:4,22 144:16
testifying 163:13	thanking 225:3	118:7,11 119:1	thrust 124:5	144:16 162:14
testimony 3:4 6:2	Thanks 206:21	122:5 125:6	tighten 230:22	163:19 164:9
19:10 34:9 35:21	theory 190:7	126:22 127:14	time 4:8 6:17 7:3	187:10 188:22
36:1 53:14 54:22	thermal 87:11	129:19 130:12	8:10,18 11:6 12:1	189:20 199:15,16
56:3 118:12 215:2	thermolysis 38:13	131:13,17 134:14	15:2,5 23:15 24:5	199:18,20 201:6
testing 3:8 9:20	38:17 56:8 82:6	136:17 137:6,19	45:5,18 53:4	tools 83:14 100:14
24:8 27:5 51:12	thermolytic 65:8	138:6 139:4,7	54:22 55:8 56:16	109:20 113:19
52:5,6,9,21 53:3,5	thickness 98:8	140:11 143:2	71:2 76:4 86:8	115:11
62:6,14 66:2	thicknesses 96:21	144:19 146:3,9	89:22 107:13	top 72:22 73:7
70:22 88:15,17	thing 56:2 83:3,22	149:9,11 150:5,20	113:13 115:18	topic 134:6
107:22 108:6,8,12	85:18 87:5 89:3	151:3 158:9 161:2	121:13 122:21	topical 65:13
108:18 109:5,6	89:16 92:13 95:20	166:1 167:12	123:17 124:1	total 21:18 55:19
117:9,10,12	95:21 107:10,20	174:4 177:12	126:16 127:3	56:19
119:15,16,20	130:18 142:14	178:13 180:17	153:9 154:14	totally 167:13
120:7 128:7	150:21 151:4	183:2 188:6 189:4	166:21 170:8	191:17
138:20 143:13	158:21 184:22	190:2 194:3 195:7	171:1,10,16,17,18	touched 124:16
149:5 151:9,13,15	190:7 194:21	196:13 197:12	181:14 182:2,8,13	199:12 200:15
151:22 182:8,18	things 69:3 71:22	198:10 199:12	189:10,11 202:1	tough 81:15
182:20,22 183:3,4	81:12,14 82:10,17	200:7 204:8,21	207:7 209:9 212:3	toxic 10:11 229:14
183:5 201:4	82:21 85:19 86:2	207:20 209:13,16	212:19 213:1,7	to-detonation
202:14 203:2,3,11	86:3 87:12 88:21	211:15 212:7,17	214:12 215:8,9	106:2
213:2 230:1	89:2,7 92:7	215:19 221:18	216:1 221:5,18	tradeoffs 216:1

traditionally 54:9,11,15 56:6 **two** 15:11 19:17 198:8 220:18 unsteady 170:4 144:22 57:15 59:15 153:5 23:17 39:3.7 40:1 **unclear** 152:13 **unusual** 116:16 trained 224:21 184:7 198:8 214:4 52:3.13 62:10 underestimated **update** 128:20 34:2 35:11 transcript 5:14 214:10 216:16 93:8 108:22 189:19 **transfer** 68:16 118:15 125:21,22 **undergo** 43:2 217:5,19 218:3,21 **upset** 164:16 72:14,19 73:1 219:12 220:8,14 130:10 141:4 114:22 **Uranium** 24:10 transferred 16:17 222:8 229:13 146:10 147:10,17 underground **urge** 190:4 73:22 10:12 138:16 230:7,20,22 148:20,22 163:21 **urgent** 183:12 transfers 68:13 tree 28:10.11 180:12 196:2 underlying 10:10 **URS** 1:23 2:17 19:3 transient 144:4 trees 49:17 223:11 224:11 174:7 54:12,14 205:21 227:22 228:3 170:21 triangle 176:15 understand 17:14 **use** 32:4.22 33:11 triangular 176:9 48:2,9,13 49:8,10 transition 13:22 231:17 31:9 59:3.14 63:3 106:2 109:15 177:1 type 124:21 130:9 65:20 67:7 69:2 49:14 50:12.17.17 114:1 125:17 **Triay** 1:25 19:14 155:2 182:20 76:7 80:2 89:5 52:14 63:13 67:1 170:12,20 192:5 19:16 32:6 35:12 190:7 192:9 112:7,9 115:9 82:19 92:9 93:17 35:18 54:2 183:10 209:11 210:15 116:18,20 117:2 214:12 101:11 111:13 transitioning 13:18 183:15 185:8 types 79:17 87:3 140:8,9 141:4 113:8,18 125:6 transitions 63:6 186:17 198:4,14 130:11 139:21 158:3 164:17 128:14 133:4,7,9 170:2 180:9 181:5 translated 120:8 199:5 205:6,10 166:13 150:17 164:8 translating 129:8 213:20,22 231:20 **typical** 85:18 86:5 189:4 197:15 174:22 175:21 **transmit** 168:21 tried 75:16 112:7 88:4 202:20 224:3 187:18 199:20 transmittal 16:5 **tri-party** 217:13 typically 38:11 understanding 201:5 219:20 49:13 86:18 115:3 transmitted 9:16 **trouble** 197:10 11:17 15:20 27:10 221:12 226:4 153:11 **trucking** 167:10 129:16 208:13 27:11 83:15 88:1 **useful** 136:17 true 123:1 138:19 120:8 122:3 136:1 uselessly 197:13 transparencies U 137:7 201:8 225:10 146:5 153:21 **uses** 43:8 44:13 ultimate 16:13 23:3 177:3 205:4 223:9 understood 61:10 115:16 171:9 transparency 58:18 94:20 66:1 112:8 143:18 221:1 truth 222:13 **usually** 91:2 114:16 120:18 158:6 **Transportation try** 53:14 101:10 undertaking 50:9 **utility** 165:10 186:7 214:9 227:11 103:16 108:2 undertook 13:10 **utilized** 32:19 ultimately 40:11 transports 227:12 136:15 194:18 unequivocally 88:17 191:22 traveled 20:3 trying 17:14 63:15 204:19 utilizing 97:22 ultra-filtration treat 21:12 62:3 72:20 73:20 92:1 unexpected 111:15 V 63:8 66:11.15 204:9 92:15 126:13 108:13 117:5 **Um-hum** 78:8 **valid** 212:5,7,9 160:15 170:14 124:2 125:1 Unfortunately **unable** 98:14 147:2 validate 64:20 159:16 179:11 39:17 **treated** 160:10 uncertain 173:5 124:9 126:1 **uniform** 69:17 72:5 treating 21:17 214:2 196:3 127:12 124:9 126:2 **Ts** 116:5 uniformly 72:12 uncertainties 51:22 validated 76:3 treatment 9:8,10 **TSRs** 164:13 **unique** 94:13,14 52:1 83:11,12 162:13 200:17 213:3 172:19 175:22 10:6,16,19 12:11 validating 127:7 110:17,20 117:4 12:13 13:19 16:11 turbulence 191:21 **unit** 68:13,18 117:13,22 118:18 validation 27:12 17:19 19:20,21 **United** 1:1 139:19 192:11 **value** 72:16 90:19 118:19 119:2,5 turn 140:7 173:17 20:13,16,21 21:8 **unknown** 160:8,15 140:18 142:3,4,6 149:18 176:5 21:15,22 22:13,15 229:2 173:5 188:1 220:9 187:21 190:7 26:10 31:11 32:5 turned 107:16 unmitigated 164:8 uncertainty 110:19 216:2.4 230:5 twenty 8:1 33:6 34:5 35:3.8 unresolved 221:10 118:14 186:14 values 32:22 33:1 36:12 51:21 54:7 twice 21:18 **unsolved** 192:12

155:17 161:1,5,7	55:11 56:11,21	197:1 198:11	222:22 229:13,15	103:13 105:8
177:7 189:20,21	57:6,17,22 58:22	208:15 213:21	229:18 230:20,20	106:13 120:2
valve 210:12	61:9,13 62:5,9,12	215:1,13 216:5	230:21 231:1	128:22 131:3
valves 44:17 78:10	62:20 64:2,10,15	222:18 225:9	wastes 10:12 11:15	141:8 146:9,15
79:3	64:18 65:18 67:5	231:19,20	12:6 16:16,21	149:14 150:3
variable 193:21	67:12 68:7,21	wanted 135:11	221:4	151:11 153:9
variables 157:12	74:8 75:4,8 76:7	187:14 198:2	watch 155:15	180:8 182:14
160:10,15,16	76:18 77:6,12	206:3 208:17	208:22	191:15,18 195:12
171:14 173:2	78:8,13 79:6,19	225:2 228:15	watching 208:20	191:13,10 193:12
184:20,21 193:20	80:20 81:3,9	warrants 209:13	water 70:11 84:19	we've 77:14 108:1
various 63:1 82:4,7	88:11,14 90:12	wash 63:9 66:12,16	138:16	108:4 115:19
85:6 88:20 136:20	93:7,11 95:10	Washington 1:12	wave 115:5 228:8	120:16 121:1
160:4	97:1,13,21 99:18	5:19 20:4 227:9	waves 114:17,19	128:18 129:8
velocity 32:5 33:12	100:10 101:6	227:13	170:14 228:1,2,4	131:19 132:14
33:21 70:12 71:12	179:15 181:1,21	wasn't 147:7	228:6,7	161:14 165:19
230:13,16	214:21 219:14	waste 9:8,9 10:6,19	way 61:18 62:2	184:15 191:16
vender 218:4	214.21 219.14 229:5	11:1,8,9,18,22	75:21 83:1 86:5	195:13 204:2,2
vent 132:17	Vice-Chairman	12:9,11,13 13:19	101:10,16 105:1	205:22 212:8,18
ventilation 42:1	4:10	14:14 16:11 17:7	111:1 121:13	203.22 212.8,18 213:12
191:4	video 5:8,10	17:7,16,20 18:8	123:9,11 135:22	whim 165:9
vents 194:11	view 113:10 120:10	19:20,21 20:12,15	123.9,11 133.22	White 107:13
venture 93:12	view 113.10 120.10 viewed 16:2,7	20:21 21:7,13,15	157:18,19 172:19	wide 82:16 186:18
verbal 16:3	viewing 5:16	20.21 21.7,13,13	177:10 223:17	widely 184:22
verbatim 5:14	viscal 82:6	22:5,12,13,14,15	ways 118:15 126:9	widespread 177:13
verbalini y 14				widespread 177215
			•	
verified 60:5	viscosity 67:20	25:6,18 26:10	190:4	Winokur 1:12,14
verified 60:5 162:13	viscosity 67:20 Visual 106:9	25:6,18 26:10 28:14 31:11,14	190:4 wear 210:15	Winokur 1:12,14 3:2 4:3,4 32:1
verified 60:5 162:13 version 171:8	viscosity 67:20 Visual 106:9 vital 37:7	25:6,18 26:10 28:14 31:11,14 32:5 33:6 34:4	190:4 wear 210:15 web 147:15	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12
verified 60:5 162:13 version 171:8 versus 65:7,16	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17	25:6,18 26:10 28:14 31:11,14 32:5 33:6 34:4 35:3,7 36:12	190:4 wear 210:15 web 147:15 website 5:9,11	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17	25:6,18 26:10 28:14 31:11,14 32:5 33:6 34:4 35:3,7 36:12 37:10,20 38:2,7	190:4 wear 210:15 web 147:15 website 5:9,11 15:14	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10	25:6,18 26:10 28:14 31:11,14 32:5 33:6 34:4 35:3,7 36:12 37:10,20 38:2,7 39:8,9,13 52:11	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11	25:6,18 26:10 28:14 31:11,14 32:5 33:6 34:4 35:3,7 36:12 37:10,20 38:2,7 39:8,9,13 52:11 52:20 54:7,8,11	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19	25:6,18 26:10 28:14 31:11,14 32:5 33:6 34:4 35:3,7 36:12 37:10,20 38:2,7 39:8,9,13 52:11 52:20 54:7,8,11 54:15 56:6,15,15	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11	25:6,18 26:10 28:14 31:11,14 32:5 33:6 34:4 35:3,7 36:12 37:10,20 38:2,7 39:8,9,13 52:11 52:20 54:7,8,11 54:15 56:6,15,15 57:15 58:3 59:15	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3	25:6,18 26:10 28:14 31:11,14 32:5 33:6 34:4 35:3,7 36:12 37:10,20 38:2,7 39:8,9,13 52:11 52:20 54:7,8,11 54:15 56:6,15,15 57:15 58:3 59:15 60:5,9,17,22 61:6	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ \end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 <u>W</u> W 1:11,16	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ \end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 <u>W</u> W 1:11,16 WAC 194:22 195:4	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ \end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 <u>W</u> W 1:11,16 WAC 194:22 195:4 waiting 213:15	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ \end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18 78:11 79:5 99:7	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 <u>W</u> W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8 want 15:15 59:1	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\\ 153:1,5,7\ 155:5\end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9 wet 138:16	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22 197:20 206:11
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18 78:11 79:5 99:7 111:16 127:19	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8 want 15:15 59:1 64:16 71:21 90:12	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\\ 153:1,5,7\ 155:5\\ 180:2\ 184:4,7\\ \end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9 wet 138:16 we'll 77:12 104:2,4	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22 197:20 206:11 209:3 210:22
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18 78:11 79:5 99:7 111:16 127:19 129:19 228:9	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8 want 15:15 59:1 64:16 71:21 90:12 96:5 99:3 104:11	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\\ 153:1,5,7\ 155:5\\ 180:2\ 184:4,7\\ 194:8,17,19,22\end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9 wet 138:16 we'll 77:12 104:2,4 138:1,3,10,12	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22 197:20 206:11 209:3 210:22 211:12,20 212:10
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18 78:11 79:5 99:7 111:16 127:19 129:19 228:9 229:17 230:1	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8 want 15:15 59:1 64:16 71:21 90:12 96:5 99:3 104:11 106:3,20 107:22	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\\ 153:1,5,7\ 155:5\\ 180:2\ 184:4,7\\ 194:8,17,19,22\\ 209:10,11\ 211:1\end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9 wet 138:16 we'll 77:12 104:2,4 138:1,3,10,12 192:17 196:20	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22 197:20 206:11 209:3 210:22 211:12,20 212:10 213:16,20 214:19
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18 78:11 79:5 99:7 111:16 127:19 129:19 228:9 229:17 230:1 231:6	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8 want 15:15 59:1 64:16 71:21 90:12 96:5 99:3 104:11 106:3,20 107:22 119:12 152:16	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\\ 153:1,5,7\ 155:5\\ 180:2\ 184:4,7\\ 194:8,17,19,22\\ 209:10,11\ 211:1\\ 214:3,4,10\ 216:15\\ \end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9 wet 138:16 we'll 77:12 104:2,4 138:1,3,10,12 192:17 196:20 223:21	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22 197:20 206:11 209:3 210:22 211:12,20 212:10 213:16,20 214:19 214:22 219:5
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18 78:11 79:5 99:7 111:16 127:19 129:19 228:9 229:17 230:1 231:6 vet 89:4	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8 want 15:15 59:1 64:16 71:21 90:12 96:5 99:3 104:11 106:3,20 107:22 119:12 152:16 158:14 170:12	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\\ 153:1,5,7\ 155:5\\ 180:2\ 184:4,7\\ 194:8,17,19,22\\ 209:10,11\ 211:1\\ 214:3,4,10\ 216:15\\ 216:18\ 217:4,19\end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9 wet 138:16 we'll 77:12 104:2,4 138:1,3,10,12 192:17 196:20 223:21 we're 66:15 68:8	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22 197:20 206:11 209:3 210:22 211:12,20 212:10 213:16,20 214:19 214:22 219:5 223:2,7,13,19
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18 78:11 79:5 99:7 111:16 127:19 129:19 228:9 229:17 230:1 231:6 vet 89:4 vetted 185:15	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8 want 15:15 59:1 64:16 71:21 90:12 96:5 99:3 104:11 106:3,20 107:22 119:12 152:16 158:14 170:12 172:15 176:13	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\\ 153:1,5,7\ 155:5\\ 180:2\ 184:4,7\\ 194:8,17,19,22\\ 209:10,11\ 211:1\\ 214:3,4,10\ 216:15\\ 216:18\ 217:4,19\\ 218:3,21\ 219:1,12\end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9 wet 138:16 we'll 77:12 104:2,4 138:1,3,10,12 192:17 196:20 223:21 we're 66:15 68:8 70:18 81:21 84:7	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22 197:20 206:11 209:3 210:22 211:12,20 212:10 213:16,20 214:19 214:22 219:5 223:2,7,13,19 224:4,8,10 228:18
verified 60:5 162:13 version 171:8 versus 65:7,16 vessel 70:6,7,15,17 73:1,2,4,7 127:15 127:18 128:5,11 129:1 179:9 vessels 3:4,6 22:11 36:21 37:18 38:21 39:2,11 40:9,22 45:10 57:5 58:21 59:5 69:17 70:4 70:18 71:6,17,18 72:10,11 73:18 78:11 79:5 99:7 111:16 127:19 129:19 228:9 229:17 230:1 231:6 vet 89:4	viscosity 67:20 Visual 106:9 vital 37:7 vitrified 17:17 VNV 201:17 void 119:10 volume 10:11 15:21 55:19 V&V 162:13 200:3 W W 1:11,16 WAC 194:22 195:4 waiting 213:15 wall 96:12,20 98:8 want 15:15 59:1 64:16 71:21 90:12 96:5 99:3 104:11 106:3,20 107:22 119:12 152:16 158:14 170:12	$\begin{array}{c} 25:6,18\ 26:10\\ 28:14\ 31:11,14\\ 32:5\ 33:6\ 34:4\\ 35:3,7\ 36:12\\ 37:10,20\ 38:2,7\\ 39:8,9,13\ 52:11\\ 52:20\ 54:7,8,11\\ 54:15\ 56:6,15,15\\ 57:15\ 58:3\ 59:15\\ 60:5,9,17,22\ 61:6\\ 62:16\ 63:2,4,4,5\\ 64:14\ 66:6,9,11\\ 67:8,17\ 68:19\\ 70:5\ 72:12,15\\ 74:14\ 123:13\\ 153:1,5,7\ 155:5\\ 180:2\ 184:4,7\\ 194:8,17,19,22\\ 209:10,11\ 211:1\\ 214:3,4,10\ 216:15\\ 216:18\ 217:4,19\end{array}$	190:4 wear 210:15 web 147:15 website 5:9,11 15:14 weeds 124:1 142:16 weigh 92:7 173:7 weight 72:16 welcome 5:22 75:6 welded 210:3 went 63:17 98:10 107:12 146:13 Weren't 197:3 West 138:21 western 227:9 wet 138:16 we'll 77:12 104:2,4 138:1,3,10,12 192:17 196:20 223:21 we're 66:15 68:8	Winokur 1:12,14 3:2 4:3,4 32:1 34:7,12,16 35:12 35:17 53:16 59:1 59:8,12,17 60:8 69:1 71:20 73:19 74:18 76:19 81:11 84:2 85:16 86:17 88:4,10 90:14 93:6,10 105:7 106:19 137:21 138:8 140:12 146:8,15 148:19 149:2 152:7 179:13 181:22 197:20 206:11 209:3 210:22 211:12,20 212:10 213:16,20 214:19 214:22 219:5 223:2,7,13,19

Wintick 208:1	186:3 198:16	227:8	112 174:16	127:15 147:12
wise 165:7	204:12 221:21	yesterday 9:5	1189 183:22 186:9	2009-1 30:21
wish 6:9,15 54:21	works 215:17	15:18 31:22 68:9	12 28:17 46:2 132:3	185:12,21 186:8
86:4 221:11,13	world 168:5 187:2	69:4,19 73:14	132:4 168:8	2010 1:8 5:2,3 7:11
224:14	187:11 197:15	93:21 111:14	206:13	16:6 43:19 45:9
wishing 6:20	worlds 169:4	165:5 183:16	12:05 232:7	46:2,16 76:9
withstand 45:14	worst 196:10,17	186:20 199:13	1200 135:11	147:12 232:5
49:1 127:19	wouldn't 87:8	212:18 216:7	123 130:7	2012 230:2
209:19	142:17 145:4	221:7 223:17	127 130:7	215 3:11
withstanding 93:15	163:14 165:9	yield 52:7 102:4,10	13 121:15	219 3:14
witnesses 53:20	172:6 180:21	yielding 87:7	140 135:9	22 42:10
215:1 231:14	wrap 14:3	young 222:3	15 5:3 21:16 43:19	222S 154:9,10
wonder 121:12	wrapping 15:1		59:20 226:4	223 3:17
221:21	write 128:20	Z	15th 43:1	224 3:19
Wonderful 34:16	190:19 200:16	zero 136:4 209:21	16 46:16	2286 8:2
word 82:18 83:19	writing 224:7	zone 191:10 228:6	160 99:8,8	232 3:22
83:20 199:19	written 5:14 9:11		1600 135:11	24th 30:6,7
words 67:16 201:11	15:12 16:3 154:13	\$	17 40:15	25 106:13
209:5	wrong 220:20	\$300 214:7	18 217:10	26 5:2 41:6 132:1
work 20:12,22 45:8	223:4	\$6 217:15	1855 184:19	132:10
94:18 109:3,12	wrote 127:16	0	19 60:1	27 77:7
118:10 137:5	128:19 173:15		1940s 11:9	27th 76:9 207:15
147:10,13,15	207:15	0.1 230:16	1954 7:17	
150:7 183:18	WRPS 2:16	0.3 230:16	1980s 85:2	3
185:8 186:5,21	WTP 19:20 26:17	008 174:22		3 102:19 187:1
193:6 203:18	30:5 31:14 34:21	021 182:4 187:17	2	3.6 52:4
204:8 205:12,17	36:7 37:6,8,11	03 71:1	2 102:10	3.7 52:4
212:1,6 214:15	38:12,17,19,22	05 71:1	2-6 189:17	30 13:15 67:20,20
215:16 217:10	40:6 41:3,5 45:14	07 168:21	2.4 51:17	106:13 131:20
218:1 219:13	45:17 48:19 49:8	1	2.5 101:14 103:19	155:16
225:5 228:17	50:4,10,18 52:21		2.7 51:21	30th 217:16
worked 91:12	55:14 60:4 66:7	1 33:11,20 74:13 133:7 144:5	20 82:12 221:22	30-fold 131:16
110:3,5 112:3	78:6 79:11 131:9		20-year 11:12	300-C3 178:5
151:1 183:21	131:12 153:2,12	1,000 227:1	200 116:9	300-C5 178:5
193:5 222:20	154:5 156:14	1,100 227:2	2001 40:2	3009 144:14
worker 25:10	194:5 198:8	1,600 132:10	2002 12:18	31 178:3
95:22 185:11		1.8 106:6	2004 32:17	32 46:4
229:12	Y	10 35:16 59:20	2004-1 32:11	35 3:4 46:3 161:10
workers 10:5,20	year 43:1 155:18	73:10 107:14	2005 108:19 114:8	350 227:2
14:17 18:6 21:3	years 8:1 10:15,15	126:6 132:2	2006 23:7 24:15	
25:15 26:16 45:8	20:11,14 21:16	174:18 187:21	143:5	4
231:13	28:19 37:3 82:13	193:10 221:22	2007 40:15 41:10	4 3:2
working 47:18	98:22 107:14	222:7	43:18	4-2 196:5
82:12 84:11	108:17 129:20	10:26 146:12	2008 147:12	40 98:6,15 104:9
128:22 169:8,11	151:16 218:2	10:30 146:14	2009 13:11 24:12	40-day 167:1
181:13 182:14	220:16 221:22,22	100 10:15 20:10	33:9 40:21 41:6	40-year 13:8
185:14,15,17	222:7 226:5 227:2	75:19 227:1	42:10 121:10,15	414-1C 162:16
		11 168:22 193:12	, í	200:1
	I		I	I

		Idge 200
42 8:2 420.1 44:4,12 45 174:15 450 28:19 5 5 187:21 5C 179:17 5E 97:3 50 75:19 174:16 227:8 500 135:10 53 106:8 54 3:5 6		
60 5:13 600 135:11 67 10:14 7 7 7:11 232:5 7-11 168:13 70 13:12 116:8 135:9 7016 1:11 73 161:9 8		
8 1:8 8:00 4:2 80 13:14 98:17 104:12 135:9 830 35:16 9 9.5 227:5 95 34:2 95th 35:11 9805 64:2,5		